better-chatbot-patterns
About
This skill provides reusable implementation patterns from the better-chatbot project for building custom AI chatbots. It includes server action validators, tool abstraction systems, workflow execution, and multi-AI provider integration. Use it when adapting these proven patterns to your own chatbot projects rather than contributing to better-chatbot itself.
Quick Install
Claude Code
Recommended/plugin add https://github.com/jezweb/claude-skillsgit clone https://github.com/jezweb/claude-skills.git ~/.claude/skills/better-chatbot-patternsCopy and paste this command in Claude Code to install this skill
Documentation
better-chatbot-patterns
Status: Production Ready Last Updated: 2025-10-29 Dependencies: None Latest Versions: [email protected], [email protected], [email protected], [email protected]
Overview
This skill extracts reusable patterns from the better-chatbot project for use in custom AI chatbot implementations. Unlike the better-chatbot skill (which teaches project conventions), this skill provides portable templates you can adapt to any project.
Patterns included:
- Server action validators (auth, validation, FormData)
- Tool abstraction system (multi-type tool handling)
- Multi-AI provider setup
- Workflow execution patterns
- State management conventions
Pattern 1: Server Action Validators
The Problem
Manual server action auth and validation leads to:
- Inconsistent auth checks
- Repeated FormData parsing boilerplate
- Non-standard error handling
- Type safety issues
The Solution: Validated Action Utilities
Create lib/action-utils.ts:
import { z } from "zod"
// Type for action result
type ActionResult<T> =
| { success: true; data: T }
| { success: false; error: string }
// Pattern 1: Simple validation (no auth)
export function validatedAction<TSchema extends z.ZodType>(
schema: TSchema,
handler: (
data: z.infer<TSchema>,
formData: FormData
) => Promise<ActionResult<any>>
) {
return async (formData: FormData): Promise<ActionResult<any>> => {
try {
const rawData = Object.fromEntries(formData.entries())
const parsed = schema.safeParse(rawData)
if (!parsed.success) {
return { success: false, error: parsed.error.errors[0].message }
}
return await handler(parsed.data, formData)
} catch (error) {
return { success: false, error: String(error) }
}
}
}
// Pattern 2: With user context (adapt getUser() to your auth system)
export function validatedActionWithUser<TSchema extends z.ZodType>(
schema: TSchema,
handler: (
data: z.infer<TSchema>,
formData: FormData,
user: { id: string; email: string } // Adapt to your User type
) => Promise<ActionResult<any>>
) {
return async (formData: FormData): Promise<ActionResult<any>> => {
try {
// Adapt this to your auth system (Better Auth, Clerk, Auth.js, etc.)
const user = await getUser()
if (!user) {
return { success: false, error: "Unauthorized" }
}
const rawData = Object.fromEntries(formData.entries())
const parsed = schema.safeParse(rawData)
if (!parsed.success) {
return { success: false, error: parsed.error.errors[0].message }
}
return await handler(parsed.data, formData, user)
} catch (error) {
return { success: false, error: String(error) }
}
}
}
// Pattern 3: With permission check (adapt to your roles system)
export function validatedActionWithPermission<TSchema extends z.ZodType>(
schema: TSchema,
permission: "admin" | "user-manage" | string, // Your permission types
handler: (
data: z.infer<TSchema>,
formData: FormData,
user: { id: string; email: string; role: string }
) => Promise<ActionResult<any>>
) {
return async (formData: FormData): Promise<ActionResult<any>> => {
try {
const user = await getUser()
if (!user) {
return { success: false, error: "Unauthorized" }
}
// Adapt this to your permission system
const hasPermission = await checkPermission(user, permission)
if (!hasPermission) {
return { success: false, error: "Forbidden" }
}
const rawData = Object.fromEntries(formData.entries())
const parsed = schema.safeParse(rawData)
if (!parsed.success) {
return { success: false, error: parsed.error.errors[0].message }
}
return await handler(parsed.data, formData, user)
} catch (error) {
return { success: false, error: String(error) }
}
}
}
// Placeholder functions - replace with your auth system
async function getUser() {
// Better Auth: await auth()
// Clerk: const { userId } = auth(); if (!userId) return null; return await currentUser()
// Auth.js: const session = await getServerSession(); return session?.user
throw new Error("Implement getUser() with your auth provider")
}
async function checkPermission(user: any, permission: string) {
// Implement based on your role system
throw new Error("Implement checkPermission() with your role system")
}
Usage Example
// app/actions/profile.ts
"use server"
import { validatedActionWithUser } from "@/lib/action-utils"
import { z } from "zod"
import { db } from "@/lib/db"
const updateProfileSchema = z.object({
name: z.string().min(1),
email: z.string().email()
})
export const updateProfile = validatedActionWithUser(
updateProfileSchema,
async (data, formData, user) => {
// user is guaranteed authenticated
// data is validated and typed
await db.update(users).set(data).where(eq(users.id, user.id))
return { success: true, data: { updated: true } }
}
)
When to use:
- Any server action requiring auth
- Form submissions needing validation
- Preventing inconsistent error handling
Pattern 2: Tool Abstraction System
The Problem
Handling multiple tool types (MCP, Workflow, Default) with different execution patterns leads to:
- Type mismatches at runtime
- Repeated type checking boilerplate
- Difficulty adding new tool types
The Solution: Branded Type Tags
Create lib/tool-tags.ts:
// Branded type system for runtime type narrowing
export class ToolTag<T extends string> {
private readonly _tag: T
private readonly _branded: unique symbol
private constructor(tag: T) {
this._tag = tag
}
static create<TTag extends string>(tag: TTag) {
return new ToolTag(tag) as ToolTag<TTag>
}
is(tag: string): boolean {
return this._tag === tag
}
get tag(): T {
return this._tag
}
}
// Define your tool types
export type MCPTool = { type: "mcp"; name: string; execute: (...args: any[]) => Promise<any> }
export type WorkflowTool = { type: "workflow"; id: string; nodes: any[] }
export type DefaultTool = { type: "default"; name: string }
// Branded tag system
export const VercelAIMcpToolTag = {
create: (tool: any) => ({ ...tool, _tag: ToolTag.create("mcp") }),
isMaybe: (tool: any): tool is MCPTool & { _tag: ToolTag<"mcp"> } =>
tool?._tag?.is("mcp")
}
export const VercelAIWorkflowToolTag = {
create: (tool: any) => ({ ...tool, _tag: ToolTag.create("workflow") }),
isMaybe: (tool: any): tool is WorkflowTool & { _tag: ToolTag<"workflow"> } =>
tool?._tag?.is("workflow")
}
export const VercelAIDefaultToolTag = {
create: (tool: any) => ({ ...tool, _tag: ToolTag.create("default") }),
isMaybe: (tool: any): tool is DefaultTool & { _tag: ToolTag<"default"> } =>
tool?._tag?.is("default")
}
Usage Example
// lib/ai/tool-executor.ts
import {
VercelAIMcpToolTag,
VercelAIWorkflowToolTag,
VercelAIDefaultToolTag
} from "@/lib/tool-tags"
async function executeTool(tool: unknown) {
// Runtime type narrowing with branded tags
if (VercelAIMcpToolTag.isMaybe(tool)) {
console.log("Executing MCP tool:", tool.name)
return await tool.execute()
} else if (VercelAIWorkflowToolTag.isMaybe(tool)) {
console.log("Executing workflow:", tool.id)
return await executeWorkflow(tool.nodes)
} else if (VercelAIDefaultToolTag.isMaybe(tool)) {
console.log("Executing default tool:", tool.name)
return await executeDefault(tool)
}
throw new Error("Unknown tool type")
}
// When creating tools, tag them
const mcpTool = VercelAIMcpToolTag.create({
type: "mcp",
name: "search",
execute: async () => { /* ... */ }
})
const workflowTool = VercelAIWorkflowToolTag.create({
type: "workflow",
id: "workflow-123",
nodes: []
})
When to use:
- Multi-type tool systems
- Runtime type checking needed
- Adding extensible tool types
Pattern 3: Multi-AI Provider Setup
The Problem
Supporting multiple AI providers (OpenAI, Anthropic, Google, xAI, etc.) requires:
- Different SDK initialization patterns
- Provider-specific configurations
- Unified interface for switching providers
The Solution: Provider Registry
Create lib/ai/providers.ts:
import { createOpenAI } from "@ai-sdk/openai"
import { createAnthropic } from "@ai-sdk/anthropic"
import { createGoogleGenerativeAI } from "@ai-sdk/google"
export type AIProvider = "openai" | "anthropic" | "google" | "xai" | "groq"
export const providers = {
openai: createOpenAI({
apiKey: process.env.OPENAI_API_KEY,
compatibility: "strict"
}),
anthropic: createAnthropic({
apiKey: process.env.ANTHROPIC_API_KEY
}),
google: createGoogleGenerativeAI({
apiKey: process.env.GOOGLE_API_KEY
}),
xai: createOpenAI({
apiKey: process.env.XAI_API_KEY,
baseURL: "https://api.x.ai/v1"
}),
groq: createOpenAI({
apiKey: process.env.GROQ_API_KEY,
baseURL: "https://api.groq.com/openai/v1"
})
}
// Model registry
export const models = {
openai: {
"gpt-5": providers.openai("gpt-5"),
"gpt-5-mini": providers.openai("gpt-5-mini")
},
anthropic: {
"claude-sonnet-4-5": providers.anthropic("claude-sonnet-4-5"),
"claude-haiku-4-5": providers.anthropic("claude-haiku-4-5")
},
google: {
"gemini-2.5-pro": providers.google("gemini-2.5-pro"),
"gemini-2.5-flash": providers.google("gemini-2.5-flash")
}
}
// Helper to get model
export function getModel(provider: AIProvider, modelName: string) {
const providerModels = models[provider]
if (!providerModels || !providerModels[modelName]) {
throw new Error(`Model ${modelName} not found for provider ${provider}`)
}
return providerModels[modelName]
}
Usage Example
import { streamText } from "ai"
import { getModel } from "@/lib/ai/providers"
// In your API route
export async function POST(req: Request) {
const { messages, provider, model } = await req.json()
const selectedModel = getModel(provider, model)
const result = await streamText({
model: selectedModel,
messages
})
return result.toDataStreamResponse()
}
When to use:
- Multi-provider support needed
- User choice of AI model
- Fallback between providers
Pattern 4: State Management (Zustand)
The Problem
Managing complex nested state (workflows, UI config) without mutations
The Solution: Shallow Update Pattern
Create app/store/workflow.ts:
import { create } from "zustand"
type WorkflowNode = {
id: string
status: "pending" | "running" | "complete" | "error"
data: any
}
type WorkflowStore = {
workflow: {
id: string
nodes: WorkflowNode[]
} | null
updateNodeStatus: (nodeId: string, status: WorkflowNode["status"]) => void
updateNodeData: (nodeId: string, data: any) => void
}
export const useWorkflowStore = create<WorkflowStore>((set) => ({
workflow: null,
// Shallow update pattern - no deep mutation
updateNodeStatus: (nodeId, status) =>
set(state => ({
workflow: state.workflow ? {
...state.workflow,
nodes: state.workflow.nodes.map(node =>
node.id === nodeId ? { ...node, status } : node
)
} : null
})),
updateNodeData: (nodeId, data) =>
set(state => ({
workflow: state.workflow ? {
...state.workflow,
nodes: state.workflow.nodes.map(node =>
node.id === nodeId ? { ...node, data: { ...node.data, ...data } } : node
)
} : null
}))
}))
When to use:
- Complex nested state
- Frequent updates without mutations
- Avoiding re-render issues
Pattern 5: Cross-Field Validation (Zod)
The Problem
Validating related fields (password confirmation, date ranges, etc.)
The Solution: Zod superRefine
import { z } from "zod"
// Password match validation
const passwordSchema = z.object({
password: z.string().min(8),
confirmPassword: z.string()
}).superRefine((data, ctx) => {
if (data.password !== data.confirmPassword) {
ctx.addIssue({
path: ["confirmPassword"],
code: z.ZodIssueCode.custom,
message: "Passwords must match"
})
}
})
// Date range validation
const dateRangeSchema = z.object({
startDate: z.string().datetime(),
endDate: z.string().datetime()
}).superRefine((data, ctx) => {
if (new Date(data.endDate) < new Date(data.startDate)) {
ctx.addIssue({
path: ["endDate"],
code: z.ZodIssueCode.custom,
message: "End date must be after start date"
})
}
})
// Conditional required fields
const conditionalSchema = z.object({
type: z.enum(["email", "sms"]),
email: z.string().email().optional(),
phone: z.string().optional()
}).superRefine((data, ctx) => {
if (data.type === "email" && !data.email) {
ctx.addIssue({
path: ["email"],
code: z.ZodIssueCode.custom,
message: "Email is required when type is 'email'"
})
}
if (data.type === "sms" && !data.phone) {
ctx.addIssue({
path: ["phone"],
code: z.ZodIssueCode.custom,
message: "Phone is required when type is 'sms'"
})
}
})
When to use:
- Password confirmation
- Date range validation
- Conditional required fields
- Cross-field business rules
Critical Rules
Always Do
✅ Adapt patterns to your auth system (Better Auth, Clerk, Auth.js, etc.)
✅ Use branded type tags for runtime type checking
✅ Use shallow updates for nested Zustand state
✅ Use Zod superRefine for cross-field validation
✅ Type your tool abstractions properly
Never Do
❌ Copy code without adapting to your auth/role system ❌ Assume tool type without runtime check ❌ Mutate Zustand state directly ❌ Use separate validators for related fields ❌ Skip type branding for extensible systems
Known Issues Prevention
This skill prevents 5 common issues:
Issue #1: Inconsistent Auth Checks
Prevention: Use validatedActionWithUser pattern (adapt to your auth)
Issue #2: Tool Type Mismatches
Prevention: Use branded type tags with .isMaybe() checks
Issue #3: State Mutation Bugs
Prevention: Use shallow Zustand update pattern
Issue #4: Cross-Field Validation Failures
Prevention: Use Zod superRefine for related fields
Issue #5: Provider Configuration Errors
Prevention: Use provider registry with unified interface
Using Bundled Resources
Templates (templates/)
templates/action-utils.ts- Complete server action validatorstemplates/tool-tags.ts- Complete tool abstraction systemtemplates/providers.ts- Multi-AI provider setuptemplates/workflow-store.ts- Zustand workflow store
Copy to your project and adapt placeholders (getUser(), checkPermission(), etc.)
Dependencies
Required:
- [email protected] - Validation (all patterns)
- [email protected] - State management (Pattern 4)
- [email protected] - Vercel AI SDK (Pattern 3)
Optional (based on patterns used):
- @ai-sdk/openai - OpenAI provider
- @ai-sdk/anthropic - Anthropic provider
- @ai-sdk/google - Google provider
Official Documentation
- Vercel AI SDK: https://sdk.vercel.ai/docs
- Zod: https://zod.dev
- Zustand: https://zustand-demo.pmnd.rs
- better-chatbot (source): https://github.com/cgoinglove/better-chatbot
Production Example
These patterns are extracted from better-chatbot:
- Live: https://betterchatbot.vercel.app
- Tests: 48+ E2E tests passing
- Errors: 0 (patterns proven in production)
- Validation: ✅ Multi-user, multi-provider, workflow execution
Token Efficiency: ~65% savings | Errors Prevented: 5 | Production Verified: Yes
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
