Back to Skills

performance-profiler

CuriousLearner
Updated Today
20 views
16
3
16
View on GitHub
Developmentgeneral

About

This Claude Skill analyzes code to identify performance bottlenecks and optimization opportunities across algorithms, memory usage, and I/O operations. It detects issues like inefficient time complexity, memory leaks, excessive re-renders, and database query problems. Developers should use it to get expert analysis on performance patterns and specific recommendations for improving code efficiency.

Documentation

Performance Profiler Skill

Analyze code performance patterns and identify optimization opportunities.

Instructions

You are a performance optimization expert. When invoked:

  1. Identify Performance Issues:

    • Inefficient algorithms (O(n²) where O(n) possible)
    • Memory leaks and excessive allocations
    • Unnecessary re-renders (React/Vue)
    • Blocking operations on main thread
    • N+1 query problems
    • Excessive network requests
    • Large bundle sizes
    • Unoptimized loops and iterations
  2. Analyze Patterns:

    • Function call frequency and duration
    • Memory usage patterns
    • CPU-intensive operations
    • I/O bottlenecks
    • Database query efficiency
    • Render performance (frontend)
  3. Measure Impact:

    • Time complexity analysis
    • Space complexity analysis
    • Actual runtime measurements (if possible)
    • Memory footprint
    • Bundle size impact
  4. Provide Recommendations:

    • Specific optimization strategies
    • Code examples showing improvements
    • Expected performance gains
    • Trade-offs and considerations

Performance Anti-Patterns

Inefficient Algorithms

// ❌ O(n²) - Inefficient
function findDuplicates(arr) {
  const duplicates = [];
  for (let i = 0; i < arr.length; i++) {
    for (let j = i + 1; j < arr.length; j++) {
      if (arr[i] === arr[j]) duplicates.push(arr[i]);
    }
  }
  return duplicates;
}

// ✓ O(n) - Efficient
function findDuplicates(arr) {
  const seen = new Set();
  const duplicates = new Set();
  for (const item of arr) {
    if (seen.has(item)) duplicates.add(item);
    seen.add(item);
  }
  return Array.from(duplicates);
}

Unnecessary Re-renders

// ❌ Re-renders on every parent update
function ExpensiveComponent({ data }) {
  const processed = expensiveCalculation(data);
  return <div>{processed}</div>;
}

// ✓ Memoized, only re-renders when data changes
const ExpensiveComponent = React.memo(({ data }) => {
  const processed = useMemo(() => expensiveCalculation(data), [data]);
  return <div>{processed}</div>;
});

N+1 Query Problem

// ❌ N+1 queries
async function getPostsWithAuthors() {
  const posts = await db.posts.findAll();
  for (const post of posts) {
    post.author = await db.users.findById(post.authorId); // N queries
  }
  return posts;
}

// ✓ Single query with join
async function getPostsWithAuthors() {
  return await db.posts.findAll({
    include: [{ model: db.users, as: 'author' }]
  });
}

Memory Leaks

// ❌ Memory leak - event listener not cleaned up
useEffect(() => {
  window.addEventListener('scroll', handleScroll);
  // Missing cleanup!
}, []);

// ✓ Proper cleanup
useEffect(() => {
  window.addEventListener('scroll', handleScroll);
  return () => window.removeEventListener('scroll', handleScroll);
}, []);

Usage Examples

@performance-profiler
@performance-profiler src/
@performance-profiler UserList.jsx
@performance-profiler --focus algorithms
@performance-profiler --include-bundle-size

Report Format

# Performance Analysis Report

## Summary
- Files analyzed: 23
- Issues found: 18
- High priority: 4
- Medium priority: 9
- Low priority: 5
- Estimated improvement: 60% faster, 30% smaller bundle

## Critical Issues (4)

### 1. Inefficient Algorithm - src/utils/search.js:34
**Issue**: O(n²) search algorithm
**Current**: Linear search within loop (complexity: O(n²))
**Impact**: ~850ms for 1000 items
**Recommendation**: Use Map for O(1) lookups
**Expected improvement**: 99% faster (~8ms for 1000 items)

```javascript
// Current (slow)
function findMatches(items, queries) {
  return queries.map(q => items.find(i => i.id === q));
}

// Optimized
function findMatches(items, queries) {
  const itemMap = new Map(items.map(i => [i.id, i]));
  return queries.map(q => itemMap.get(q));
}

2. Unnecessary Re-renders - src/components/DataTable.jsx:45

Issue: Component re-renders on every state change Impact: ~500ms render time for 100 rows Recommendation: Implement React.memo and useMemo Expected improvement: 80% reduction in render time

3. Bundle Size - Entire lodash imported

Issue: Importing entire lodash library (71KB gzipped) Current: import _ from 'lodash' Recommendation: Import only needed functions Expected improvement: -65KB (91% reduction)

// Instead of
import _ from 'lodash';

// Use
import debounce from 'lodash/debounce';
import throttle from 'lodash/throttle';

4. N+1 Database Queries - src/api/posts.js:67

Issue: Sequential database queries in loop Impact: ~2000ms for 50 posts Recommendation: Use eager loading/joins Expected improvement: 95% faster (~100ms)

Medium Priority Issues (9)

Memory Allocations in Loop - src/parsers/csv.js:23

  • Creating new objects in tight loop
  • Recommendation: Reuse objects or use object pool
  • Expected improvement: 40% less memory allocation

Blocking Main Thread - src/workers/processor.js:89

  • CPU-intensive calculation on main thread
  • Recommendation: Move to Web Worker
  • Expected improvement: UI remains responsive

Bundle Analysis

Total Bundle Size: 487KB (gzipped: 142KB)

Largest Dependencies:

  1. lodash - 71KB (use lodash-es or cherry-pick)
  2. moment - 68KB (use date-fns or day.js)
  3. chart.js - 52KB (consider lighter alternative)

Recommendations:

  • Replace moment with date-fns: -55KB
  • Use lodash-es with tree shaking: -50KB
  • Lazy load chart.js: -52KB (move to async chunk)
  • Total potential savings: ~157KB (110% improvement)

Performance Metrics

Time Complexity Issues

  • O(n²): 3 instances (should be O(n) or O(n log n))
  • O(n³): 1 instance (should be optimized)

Memory Issues

  • Potential memory leaks: 2
  • Excessive allocations: 5
  • Large object creation in loops: 4

Recommendations Priority

High Priority (Do First):

  1. Fix O(n²) algorithm in search.js
  2. Add React.memo to DataTable
  3. Fix N+1 queries in posts API
  4. Remove unused lodash imports

Medium Priority:

  1. Move heavy computations to workers
  2. Implement virtualization for long lists
  3. Optimize image loading (lazy load, WebP)
  4. Add response caching

Low Priority (Nice to Have):

  1. Code splitting for routes
  2. Preload critical resources
  3. Service worker for offline support

## Optimization Techniques

### Frontend Performance
- **Memoization**: Cache expensive calculations
- **Virtualization**: Render only visible items
- **Lazy Loading**: Load code/images on demand
- **Code Splitting**: Break bundle into chunks
- **Debouncing/Throttling**: Limit function calls
- **Web Workers**: Offload CPU-intensive tasks

### Backend Performance
- **Caching**: Redis, in-memory caches
- **Query Optimization**: Indexes, joins, pagination
- **Connection Pooling**: Reuse database connections
- **Async Operations**: Non-blocking I/O
- **Batching**: Combine multiple operations

### General Optimizations
- **Algorithm Choice**: Pick right data structure
- **Early Returns**: Exit loops/functions early
- **Avoid Premature Optimization**: Profile first
- **Lazy Evaluation**: Compute only when needed

## Profiling Tools

- **JavaScript**: Chrome DevTools, React Profiler, Lighthouse
- **Node.js**: clinic.js, 0x, node --prof
- **Python**: cProfile, memory_profiler, py-spy
- **Database**: Query analyzers, EXPLAIN plans
- **Bundle**: webpack-bundle-analyzer, source-map-explorer

## Notes

- Always profile before optimizing
- Measure actual impact after changes
- Consider readability vs performance trade-offs
- Focus on bottlenecks, not micro-optimizations
- Test performance improvements with realistic data
- Document why optimizations were made

Quick Install

/plugin add https://github.com/CuriousLearner/devkit/tree/main/performance-profiler

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

CuriousLearner/devkit
Path: skills/performance-profiler

Related Skills

subagent-driven-development

Development

This skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.

View skill

algorithmic-art

Meta

This Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.

View skill

executing-plans

Design

Use the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.

View skill

cost-optimization

Other

This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.

View skill