Back to Skills

cloudflare-workers-ai

jezweb
Updated Today
33 views
33
4
33
View on GitHub
Metawordai

About

This skill provides comprehensive guidance for implementing AI inference using Cloudflare Workers AI. It covers running LLMs, generating text/images, configuring AI bindings, streaming responses, and integrating with AI Gateway and RAG systems. Use it when working with serverless AI models or troubleshooting common Workers AI errors.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/jezweb/claude-skills
Git CloneAlternative
git clone https://github.com/jezweb/claude-skills.git ~/.claude/skills/cloudflare-workers-ai

Copy and paste this command in Claude Code to install this skill

Documentation

Cloudflare Workers AI - Complete Reference

Production-ready knowledge domain for building AI-powered applications with Cloudflare Workers AI.

Status: Production Ready ✅ Last Updated: 2025-10-21 Dependencies: cloudflare-worker-base (for Worker setup) Latest Versions: [email protected], @cloudflare/[email protected]


Table of Contents

  1. Quick Start (5 minutes)
  2. Workers AI API Reference
  3. Model Selection Guide
  4. Common Patterns
  5. AI Gateway Integration
  6. Rate Limits & Pricing
  7. Production Checklist

Quick Start (5 minutes)

1. Add AI Binding

wrangler.jsonc:

{
  "ai": {
    "binding": "AI"
  }
}

2. Run Your First Model

export interface Env {
  AI: Ai;
}

export default {
  async fetch(request: Request, env: Env): Promise<Response> {
    const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
      prompt: 'What is Cloudflare?',
    });

    return Response.json(response);
  },
};

3. Add Streaming (Recommended)

const stream = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [{ role: 'user', content: 'Tell me a story' }],
  stream: true, // Always use streaming for text generation!
});

return new Response(stream, {
  headers: { 'content-type': 'text/event-stream' },
});

Why streaming?

  • Prevents buffering large responses in memory
  • Faster time-to-first-token
  • Better user experience for long-form content
  • Avoids Worker timeout issues

Workers AI API Reference

env.AI.run()

Run an AI model inference.

Signature:

async env.AI.run(
  model: string,
  inputs: ModelInputs,
  options?: { gateway?: { id: string; skipCache?: boolean } }
): Promise<ModelOutput | ReadableStream>

Parameters:

  • model (string, required) - Model ID (e.g., @cf/meta/llama-3.1-8b-instruct)
  • inputs (object, required) - Model-specific inputs
  • options (object, optional) - Additional options
    • gateway (object) - AI Gateway configuration
      • id (string) - Gateway ID
      • skipCache (boolean) - Skip AI Gateway cache

Returns:

  • Non-streaming: Promise<ModelOutput> - JSON response
  • Streaming: ReadableStream - Server-sent events stream

Text Generation Models

Input Format:

{
  messages?: Array<{ role: 'system' | 'user' | 'assistant'; content: string }>;
  prompt?: string; // Deprecated, use messages
  stream?: boolean; // Default: false
  max_tokens?: number; // Max tokens to generate
  temperature?: number; // 0.0-1.0, default varies by model
  top_p?: number; // 0.0-1.0
  top_k?: number;
}

Output Format (Non-Streaming):

{
  response: string; // Generated text
}

Example:

const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [
    { role: 'system', content: 'You are a helpful assistant.' },
    { role: 'user', content: 'What is TypeScript?' },
  ],
  stream: false,
});

console.log(response.response);

Text Embeddings Models

Input Format:

{
  text: string | string[]; // Single text or array of texts
}

Output Format:

{
  shape: number[]; // [batch_size, embedding_dimensions]
  data: number[][]; // Array of embedding vectors
}

Example:

const embeddings = await env.AI.run('@cf/baai/bge-base-en-v1.5', {
  text: ['Hello world', 'Cloudflare Workers'],
});

console.log(embeddings.shape); // [2, 768]
console.log(embeddings.data[0]); // [0.123, -0.456, ...]

Image Generation Models

Input Format:

{
  prompt: string; // Text description
  num_steps?: number; // Default: 20
  guidance?: number; // CFG scale, default: 7.5
  strength?: number; // For img2img, default: 1.0
  image?: number[][]; // For img2img (base64 or array)
}

Output Format:

  • Binary image data (PNG/JPEG)

Example:

const imageStream = await env.AI.run('@cf/black-forest-labs/flux-1-schnell', {
  prompt: 'A beautiful sunset over mountains',
});

return new Response(imageStream, {
  headers: { 'content-type': 'image/png' },
});

Vision Models

Input Format:

{
  messages: Array<{
    role: 'user' | 'assistant';
    content: Array<{ type: 'text' | 'image_url'; text?: string; image_url?: { url: string } }>;
  }>;
}

Example:

const response = await env.AI.run('@cf/meta/llama-3.2-11b-vision-instruct', {
  messages: [
    {
      role: 'user',
      content: [
        { type: 'text', text: 'What is in this image?' },
        { type: 'image_url', image_url: { url: '...' } },
      ],
    },
  ],
});

Model Selection Guide

Text Generation (LLMs)

ModelBest ForRate LimitSize
@cf/meta/llama-3.1-8b-instructGeneral purpose, fast300/min8B
@cf/meta/llama-3.2-1b-instructUltra-fast, simple tasks300/min1B
@cf/qwen/qwen1.5-14b-chat-awqHigh quality, complex reasoning150/min14B
@cf/deepseek-ai/deepseek-r1-distill-qwen-32bCoding, technical content300/min32B
@hf/thebloke/mistral-7b-instruct-v0.1-awqFast, efficient400/min7B

Text Embeddings

ModelDimensionsBest ForRate Limit
@cf/baai/bge-base-en-v1.5768General purpose RAG3000/min
@cf/baai/bge-large-en-v1.51024High accuracy search1500/min
@cf/baai/bge-small-en-v1.5384Fast, low storage3000/min

Image Generation

ModelBest ForRate LimitSpeed
@cf/black-forest-labs/flux-1-schnellHigh quality, photorealistic720/minFast
@cf/stabilityai/stable-diffusion-xl-base-1.0General purpose720/minMedium
@cf/lykon/dreamshaper-8-lcmArtistic, stylized720/minFast

Vision Models

ModelBest ForRate Limit
@cf/meta/llama-3.2-11b-vision-instructImage understanding720/min
@cf/unum/uform-gen2-qwen-500mFast image captioning720/min

Common Patterns

Pattern 1: Chat Completion with History

app.post('/chat', async (c) => {
  const { messages } = await c.req.json<{
    messages: Array<{ role: string; content: string }>;
  }>();

  const response = await c.env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
    messages,
    stream: true,
  });

  return new Response(response, {
    headers: { 'content-type': 'text/event-stream' },
  });
});

Pattern 2: RAG (Retrieval Augmented Generation)

// Step 1: Generate embeddings
const embeddings = await env.AI.run('@cf/baai/bge-base-en-v1.5', {
  text: [userQuery],
});

const vector = embeddings.data[0];

// Step 2: Search Vectorize
const matches = await env.VECTORIZE.query(vector, { topK: 3 });

// Step 3: Build context from matches
const context = matches.matches.map((m) => m.metadata.text).join('\n\n');

// Step 4: Generate response with context
const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [
    {
      role: 'system',
      content: `Answer using this context:\n${context}`,
    },
    { role: 'user', content: userQuery },
  ],
  stream: true,
});

return new Response(response, {
  headers: { 'content-type': 'text/event-stream' },
});

Pattern 3: Structured Output with Zod

import { z } from 'zod';

const RecipeSchema = z.object({
  name: z.string(),
  ingredients: z.array(z.string()),
  instructions: z.array(z.string()),
  prepTime: z.number(),
});

app.post('/recipe', async (c) => {
  const { dish } = await c.req.json<{ dish: string }>();

  const response = await c.env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
    messages: [
      {
        role: 'user',
        content: `Generate a recipe for ${dish}. Return ONLY valid JSON matching this schema: ${JSON.stringify(RecipeSchema.shape)}`,
      },
    ],
  });

  // Parse and validate
  const recipe = RecipeSchema.parse(JSON.parse(response.response));

  return c.json(recipe);
});

Pattern 4: Image Generation + R2 Storage

app.post('/generate-image', async (c) => {
  const { prompt } = await c.req.json<{ prompt: string }>();

  // Generate image
  const imageStream = await c.env.AI.run('@cf/black-forest-labs/flux-1-schnell', {
    prompt,
  });

  const imageBytes = await new Response(imageStream).bytes();

  // Store in R2
  const key = `images/${Date.now()}.png`;
  await c.env.BUCKET.put(key, imageBytes, {
    httpMetadata: { contentType: 'image/png' },
  });

  return c.json({
    success: true,
    url: `https://your-domain.com/${key}`,
  });
});

AI Gateway Integration

AI Gateway provides caching, logging, and analytics for AI requests.

Setup:

const response = await env.AI.run(
  '@cf/meta/llama-3.1-8b-instruct',
  { prompt: 'Hello' },
  {
    gateway: {
      id: 'my-gateway', // Your gateway ID
      skipCache: false, // Use cache
    },
  }
);

Benefits:

  • Cost Tracking - Monitor neurons usage per request
  • Caching - Reduce duplicate inference costs
  • Logging - Debug and analyze AI requests
  • Rate Limiting - Additional layer of protection
  • Analytics - Request patterns and performance

Access Gateway Logs:

const gateway = env.AI.gateway('my-gateway');
const logId = env.AI.aiGatewayLogId;

// Send feedback
await gateway.patchLog(logId, {
  feedback: { rating: 1, comment: 'Great response' },
});

Rate Limits & Pricing

Rate Limits (per minute)

Task TypeDefault LimitNotes
Text Generation300/minSome fast models: 400-1500/min
Text Embeddings3000/minBGE-large: 1500/min
Image Generation720/minAll image models
Vision Models720/minImage understanding
Translation720/minM2M100, Opus MT
Classification2000/minText classification
Speech Recognition720/minWhisper models

Pricing (Neurons-Based)

Free Tier:

  • 10,000 neurons per day
  • Resets daily at 00:00 UTC

Paid Tier:

  • $0.011 per 1,000 neurons
  • 10,000 neurons/day included
  • Unlimited usage above free allocation

Example Costs:

ModelInput (1M tokens)Output (1M tokens)
Llama 3.2 1B$0.027$0.201
Llama 3.1 8B$0.088$0.606
BGE-base embeddings$0.005N/A
Flux image generation~$0.011/imageN/A

Production Checklist

Before Deploying

  • Enable AI Gateway for cost tracking and logging
  • Implement streaming for all text generation endpoints
  • Add rate limit retry with exponential backoff
  • Validate input length to prevent token limit errors
  • Set appropriate timeouts (Workers: 30s CPU default, 5m max)
  • Monitor neurons usage in Cloudflare dashboard
  • Test error handling for model unavailable, rate limits
  • Add input sanitization to prevent prompt injection
  • Configure CORS if using from browser
  • Plan for scale - upgrade to Paid plan if needed

Error Handling

async function runAIWithRetry(
  env: Env,
  model: string,
  inputs: any,
  maxRetries = 3
): Promise<any> {
  let lastError: Error;

  for (let i = 0; i < maxRetries; i++) {
    try {
      return await env.AI.run(model, inputs);
    } catch (error) {
      lastError = error as Error;
      const message = lastError.message.toLowerCase();

      // Rate limit - retry with backoff
      if (message.includes('429') || message.includes('rate limit')) {
        const delay = Math.pow(2, i) * 1000; // Exponential backoff
        await new Promise((resolve) => setTimeout(resolve, delay));
        continue;
      }

      // Other errors - throw immediately
      throw error;
    }
  }

  throw lastError!;
}

Monitoring

app.use('*', async (c, next) => {
  const start = Date.now();

  await next();

  // Log AI usage
  console.log({
    path: c.req.path,
    duration: Date.now() - start,
    logId: c.env.AI.aiGatewayLogId,
  });
});

OpenAI Compatibility

Workers AI supports OpenAI-compatible endpoints.

Using OpenAI SDK:

import OpenAI from 'openai';

const openai = new OpenAI({
  apiKey: env.CLOUDFLARE_API_KEY,
  baseURL: `https://api.cloudflare.com/client/v4/accounts/${env.CLOUDFLARE_ACCOUNT_ID}/ai/v1`,
});

// Chat completions
const completion = await openai.chat.completions.create({
  model: '@cf/meta/llama-3.1-8b-instruct',
  messages: [{ role: 'user', content: 'Hello!' }],
});

// Embeddings
const embeddings = await openai.embeddings.create({
  model: '@cf/baai/bge-base-en-v1.5',
  input: 'Hello world',
});

Endpoints:

  • /v1/chat/completions - Text generation
  • /v1/embeddings - Text embeddings

Vercel AI SDK Integration

npm install workers-ai-provider ai
import { createWorkersAI } from 'workers-ai-provider';
import { generateText, streamText } from 'ai';

const workersai = createWorkersAI({ binding: env.AI });

// Generate text
const result = await generateText({
  model: workersai('@cf/meta/llama-3.1-8b-instruct'),
  prompt: 'Write a poem',
});

// Stream text
const stream = streamText({
  model: workersai('@cf/meta/llama-3.1-8b-instruct'),
  prompt: 'Tell me a story',
});

Limits Summary

FeatureLimit
Concurrent requestsNo hard limit (rate limits apply)
Max input tokensVaries by model (typically 2K-128K)
Max output tokensVaries by model (typically 512-2048)
Streaming chunk size~1 KB
Image size (output)~5 MB
Request timeoutWorkers timeout applies (30s default, 5m max CPU)
Daily free neurons10,000
Rate limitsSee "Rate Limits & Pricing" section

References

GitHub Repository

jezweb/claude-skills
Path: skills/cloudflare-workers-ai
aiautomationclaude-codeclaude-skillscloudflarereact

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill