cybernetic-immune
About
This skill implements a cybernetic immune system for anomaly detection, using active inference and GF(3) trit encoding to discriminate between self and non-self signals. It's designed for systems requiring autonomous monitoring and response to perturbations via information geometry. Use it to build self-regulating applications that maintain integrity through predictive coding and reafference.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/cybernetic-immuneCopy and paste this command in Claude Code to install this skill
Documentation
Cybernetic Immune Skill
"The immune system is a cognitive system: it learns, remembers, and discriminates self from non-self." — Francisco Varela, Principles of Biological Autonomy (1979)
bmorphism Contributions
"Autopoietic Ergodicity combines the principles of autopoiesis and ergodicity. Autopoiesis refers to the self-maintenance of a system, where the system is capable of reproducing and maintaining itself." — vibes.lol gist
"Active Inference in String Diagrams: A Categorical Account of Predictive Processing and Free Energy" — ACT 2023, Tull, Kleiner, Smithe
Categorical Cybernetics Connection: The immune system's self/non-self discrimination maps directly to:
- Reafference (self-caused) → SELF trit (-1)
- Exafference (externally-caused) → NON-SELF trit (+1)
- Markov blanket → boundary of selfhood
Key Papers (from bmorphism's Plurigrid references):
- Towards Foundations of Categorical Cybernetics - parametrised optics for agency
- Active Inference in String Diagrams - free energy via category theory
- Categorical Cybernetics Manifesto - control theory of complex systems
Related to bmorphism's work on:
- plurigrid/act - active inference + ACT + enacted cognition
- Autopoietic ergodicity and embodied gradualism
1. Core Concept
Self/Non-Self Discrimination via reafference vs exafference:
- Reafference: Self-caused sensations (predicted = observed) → tolerate
- Exafference: Externally-caused sensations (predicted ≠ observed) → inspect/attack
GF(3) Trit Encoding:
| Trit | Classification | Immune Role | Action |
|---|---|---|---|
| -1 | SELF | T_reg (regulatory) | Suppress, tolerate |
| 0 | UNKNOWN | MHC presentation | Inspect, process |
| +1 | NON-SELF | Effector cells | Attack, respond |
Autoimmune = GF(3) Conservation Violation: Σ(trits) ≢ 0 mod 3
2. Information Geometry
The immune state manifold is a probability simplex with Fisher-Rao metric:
// Fisher information: I(θ) = E[(∂log p/∂θ)²]
computeFisherInformation() {
const probs = Array.from(this.stateDistribution.values());
// For categorical: I_ij = δ_ij/p_i - 1
return probs.map((p, i) => 1 / Math.max(p, 0.001));
}
// Fisher-Rao geodesic distance: d(p,q)² = 4 Σ (√p_i - √q_i)²
fisherRaoDistance(dist1, dist2) {
let sum = 0;
for (const k of keys) {
const p = dist1.get(k) || 0;
const q = dist2.get(k) || 0;
sum += (Math.sqrt(p) - Math.sqrt(q)) ** 2;
}
return 2 * Math.sqrt(sum); // = 2 × Hellinger distance
}
Natural Gradient: F⁻¹ · ∇L for efficient belief updating in curved space.
Parallel Transport: Cytokine signals transported along geodesics preserve information content.
3. Immune States
const IMMUNE_STATES = {
NAIVE: 'naive', // Not yet encountered antigen
TOLERANT: 'tolerant', // Self-recognized, suppress response (-1)
ACTIVATED: 'activated', // Response engaged (+1)
MEMORY: 'memory', // Prior encounter, fast recall
ANERGIC: 'anergic' // Exhausted, non-responsive (0)
};
4. Collision → Immune Response
// Recognition via color signature (antigenic epitope)
colorSignature(color) {
const hueBin = Math.floor(color.H / 30); // 12 bins
return `H${hueBin}T${color.trit}`;
}
// Response classification
recognize(antigenColor) {
const signature = this.colorSignature(antigenColor);
// Self-tolerance check
if (this.toleranceList.has(signature)) {
return { classification: 'self', trit: -1, action: 'tolerate' };
}
// Adaptive memory
if (this.memory.has(signature)) {
const mem = this.memory.get(signature);
return { trit: mem.trit, action: mem.hostile ? 'attack' : 'tolerate' };
}
// Novel: inspect via Markov blanket
return { classification: 'novel', trit: 0, action: 'inspect' };
}
5. Cognitive Firewall
System-level immune coordination:
class CognitiveFirewall {
constructor(immuneAgents) {
this.agents = immuneAgents;
this.threatLevel = 0;
this.autoimmuneCrisis = false;
}
// Coordinated response
coordinatedResponse() {
if (this.autoimmuneCrisis) {
// Emergency T_reg activation
return { action: 'tolerance_induction' };
}
if (this.threatLevel > 0.5) {
// Germinal center reaction
return { action: 'coordinated_attack' };
}
return { action: 'homeostasis' };
}
}
6. Parallel Processing (GF(3) Aligned)
parallelProcess(allTiles) {
// Partition agents by trit for parallel streams
const partitions = {
minus: agents.filter(a => a.trit === -1), // Validators
ergodic: agents.filter(a => a.trit === 0), // Coordinators
plus: agents.filter(a => a.trit === 1) // Generators
};
// Process each partition independently
for (const [trit, batch] of Object.entries(partitions)) {
for (const agent of batch) {
// Collision detection and response
}
}
// Synchronize: ensure GF(3) conservation
const tritBalance = results.minus.length * -1 + results.plus.length * 1;
return { conserved: tritBalance % 3 === 0 };
}
7. Cytokine Cascade with Parallel Transport
Signals propagate along Fisher-Rao geodesics:
parallelTransport(signal, fromAgent, toAgent) {
const geodesicDist = this.fisherRaoDistance(
new Map([[fromAgent.state, 1]]),
new Map([[toAgent.state, 1]])
);
// Decay proportional to geodesic distance
const transported = signal.level * Math.exp(-geodesicDist * 0.5);
return { level: transported, geodesicLoss: signal.level - transported };
}
8. GF(3) Triads
# Core Immune Triads
three-match (-1) ⊗ cybernetic-immune (0) ⊗ gay-mcp (+1) = 0 ✓ [Self/Non-Self]
temporal-coalgebra (-1) ⊗ cybernetic-immune (0) ⊗ agent-o-rama (+1) = 0 ✓ [Immune Response]
sheaf-cohomology (-1) ⊗ cybernetic-immune (0) ⊗ koopman-generator (+1) = 0 ✓ [Cytokine Cascade]
shadow-goblin (-1) ⊗ cybernetic-immune (0) ⊗ gay-mcp (+1) = 0 ✓ [T_reg Surveillance]
polyglot-spi (-1) ⊗ cybernetic-immune (0) ⊗ gay-mcp (+1) = 0 ✓ [Cross-Species]
9. Visualization
- Immune overlays: Red (activated), Green (tolerant), Yellow (memory), Gray (anergic)
- Cytokine network: Orange edges with opacity ∝ signal level
- Fisher-Rao manifold inset: 2D projection of immune state space
10. Diagnostics
getDiagnostics() {
return {
entropy: H(stateDistribution), // Uncertainty
curvature: trace(FisherMatrix) / n, // Manifold curvature
threatLevel: activatedCount / total,
autoimmune: tritSum % 3 !== 0
};
}
11. References
- Varela — Principles of Biological Autonomy (1979)
- Friston — The Free-Energy Principle (2010)
- Powers — Behavior: The Control of Perception (1973)
- Amari — Information Geometry and Its Applications (2016)
- Maturana & Varela — Autopoiesis and Cognition (1980)
12. See Also
autopoiesis— Self-production and operational closuregay-mcp— Deterministic color generationshadow-goblin— Observer agent tracingkoopman-generator— Dynamics from observables
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Graph Theory
- networkx [○] via bicomodule
- Universal graph hub
Bibliography References
game-theory: 21 citations in bib.duckdb
SDF Interleaving
This skill connects to Software Design for Flexibility (Hanson & Sussman, 2021):
Primary Chapter: 10. Adventure Game Example
Concepts: autonomous agent, game, synthesis
GF(3) Balanced Triad
cybernetic-immune (−) + SDF.Ch10 (+) + [balancer] (○) = 0
Skill Trit: -1 (MINUS - verification)
Secondary Chapters
- Ch7: Propagators
- Ch3: Variations on an Arithmetic Theme
- Ch4: Pattern Matching
Connection Pattern
Adventure games synthesize techniques. This skill integrates multiple patterns.
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.
GitHub Repository
Related Skills
algorithmic-art
MetaThis Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.
subagent-driven-development
DevelopmentThis skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.
executing-plans
DesignUse the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.
cost-optimization
OtherThis Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.
