Back to Skills

optimizing-deep-learning-models

jeremylongshore
Updated Today
89 views
918
111
918
View on GitHub
Metaaiautomationdata

About

This skill automatically optimizes deep learning models to improve accuracy, reduce training time, or minimize resource consumption. It analyzes model architecture and data, then applies techniques like optimization algorithms and learning rate scheduling. Use it when developers request model performance improvements, and it will generate optimized code.

Documentation

Overview

This skill empowers Claude to automatically optimize deep learning models, enhancing their performance and efficiency. It intelligently applies various optimization techniques based on the model's characteristics and the user's objectives.

How It Works

  1. Analyze Model: Examines the deep learning model's architecture, training data, and performance metrics.
  2. Identify Optimizations: Determines the most effective optimization strategies based on the analysis, such as adjusting the learning rate, applying regularization techniques, or modifying the optimizer.
  3. Apply Optimizations: Generates optimized code that implements the chosen strategies.
  4. Evaluate Performance: Assesses the impact of the optimizations on model performance, providing metrics like accuracy, training time, and resource consumption.

When to Use This Skill

This skill activates when you need to:

  • Optimize the performance of a deep learning model.
  • Reduce the training time of a deep learning model.
  • Improve the accuracy of a deep learning model.
  • Optimize the learning rate for a deep learning model.
  • Reduce resource consumption during deep learning model training.

Examples

Example 1: Improving Model Accuracy

User request: "Optimize this deep learning model for improved image classification accuracy."

The skill will:

  1. Analyze the model and identify potential areas for improvement, such as adjusting the learning rate or adding regularization.
  2. Apply the selected optimization techniques and generate optimized code.
  3. Evaluate the model's performance and report the improved accuracy.

Example 2: Reducing Training Time

User request: "Reduce the training time of this deep learning model."

The skill will:

  1. Analyze the model and identify bottlenecks in the training process.
  2. Apply techniques like batch size adjustment or optimizer selection to reduce training time.
  3. Evaluate the model's performance and report the reduced training time.

Best Practices

  • Optimizer Selection: Experiment with different optimizers (e.g., Adam, SGD) to find the best fit for the model and dataset.
  • Learning Rate Scheduling: Implement learning rate scheduling to dynamically adjust the learning rate during training.
  • Regularization: Apply regularization techniques (e.g., L1, L2 regularization) to prevent overfitting.

Integration

This skill can be integrated with other plugins that provide model building and data preprocessing capabilities. It can also be used in conjunction with monitoring tools to track the performance of optimized models.

Quick Install

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skills/tree/main/deep-learning-optimizer

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

jeremylongshore/claude-code-plugins-plus-skills
Path: backups/skill-structure-cleanup-20251108-073936/plugins/ai-ml/deep-learning-optimizer/skills/deep-learning-optimizer
aiautomationclaude-codedevopsmarketplacemcp

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill