Back to Skills

ai-native-development

ArieGoldkin
Updated Today
51 views
5
5
View on GitHub
Metaaillmragembeddingsvector-databaseagentslangchain2025

About

This skill teaches developers to build AI-first applications using RAG pipelines, vector databases, and agentic workflows. It covers essential techniques like prompt engineering, function calling, and cost optimization for modern AI development. Use it when creating chatbots, semantic search systems, or AI agents that integrate with LLMs.

Documentation

AI-Native Development

Overview

AI-Native Development focuses on building applications where AI is a first-class citizen, not an afterthought. This skill provides comprehensive patterns for integrating LLMs, implementing RAG (Retrieval-Augmented Generation), using vector databases, building agentic workflows, and optimizing AI application performance and cost.

When to use this skill:

  • Building chatbots, Q&A systems, or conversational interfaces
  • Implementing semantic search or recommendation engines
  • Creating AI agents that can use tools and take actions
  • Integrating LLMs (OpenAI, Anthropic, open-source models) into applications
  • Building RAG systems for knowledge retrieval
  • Optimizing AI costs and latency
  • Implementing AI observability and monitoring

Why AI-Native Development Matters

Traditional software is deterministic; AI-native applications are probabilistic:

  • Context is Everything: LLMs need relevant context to provide accurate answers
  • RAG Over Fine-Tuning: Retrieval is cheaper and more flexible than fine-tuning
  • Embeddings Enable Semantic Search: Move beyond keyword matching to understanding meaning
  • Agentic Workflows: LLMs can reason, plan, and use tools autonomously
  • Cost Management: Token usage directly impacts operational costs
  • Observability: Debugging probabilistic systems requires new approaches
  • Prompt Engineering: How you ask matters as much as what you ask

Core Concepts

1. Embeddings & Vector Search

Embeddings are vector representations of text that capture semantic meaning. Similar concepts have similar vectors.

Key Capabilities:

  • Convert text to high-dimensional vectors (1536 or 3072 dimensions)
  • Measure semantic similarity using cosine similarity
  • Find relevant documents through vector search
  • Batch process for efficiency

Detailed Implementation: See references/vector-databases.md for:

  • OpenAI embeddings setup and batch processing
  • Cosine similarity algorithms
  • Chunking strategies (500-1000 tokens with 10-20% overlap)

2. Vector Databases

Store and retrieve embeddings efficiently at scale.

Popular Options:

  • Pinecone: Serverless, managed service ($0.096/hour)
  • Chroma: Open source, self-hosted
  • Weaviate: Flexible schema, hybrid search
  • Qdrant: Rust-based, high performance

Detailed Implementation: See references/vector-databases.md for:

  • Complete setup guides for each database
  • Upsert, query, update, delete operations
  • Metadata filtering and hybrid search
  • Cost comparison and best practices

3. RAG (Retrieval-Augmented Generation)

RAG combines retrieval systems with LLMs to provide accurate, grounded answers.

Core Pattern:

  1. Retrieve relevant documents from vector database
  2. Construct context from top results
  3. Generate answer with LLM using retrieved context

Advanced Patterns:

  • RAG with citations and source tracking
  • Hybrid search (semantic + keyword)
  • Multi-query RAG for better recall
  • HyDE (Hypothetical Document Embeddings)
  • Contextual compression for relevance

Detailed Implementation: See references/rag-patterns.md for:

  • Basic and advanced RAG patterns with full code
  • Citation strategies
  • Hybrid search with Reciprocal Rank Fusion
  • Conversation memory patterns
  • Error handling and validation

4. Function Calling & Tool Use

Enable LLMs to use external tools and APIs reliably.

Capabilities:

  • Define tools with JSON schemas
  • Execute functions based on LLM decisions
  • Handle parallel tool calls
  • Stream responses with tool use

Detailed Implementation: See references/function-calling.md for:

  • Tool definition patterns (OpenAI and Anthropic)
  • Function calling loops
  • Parallel and streaming tool execution
  • Input validation with Zod
  • Error handling and fallback strategies

5. Agentic Workflows

Enable LLMs to reason, plan, and take autonomous actions.

Patterns:

  • ReAct: Reasoning + Acting loop with observations
  • Tree of Thoughts: Explore multiple reasoning paths
  • Multi-Agent: Specialized agents collaborating on complex tasks
  • Autonomous Agents: Self-directed goal achievement

Detailed Implementation: See references/agentic-workflows.md for:

  • Complete ReAct loop implementation
  • Tree of Thoughts exploration
  • Multi-agent coordinator patterns
  • Agent memory management
  • Error recovery and safety guards

6. Streaming Responses

Deliver real-time AI responses for better UX.

Capabilities:

  • Stream LLM output token-by-token
  • Server-Sent Events (SSE) for web clients
  • Streaming with function calls
  • Backpressure handling

Detailed Implementation: See ../streaming-api-patterns/SKILL.md for streaming patterns

7. Cost Optimization

Strategies:

  • Use smaller models for simple tasks (GPT-3.5 vs GPT-4)
  • Implement prompt caching (Anthropic's ephemeral cache)
  • Batch requests when possible
  • Set max_tokens to prevent runaway generation
  • Monitor usage with alerts

Token Counting:

import { encoding_for_model } from 'tiktoken'

function countTokens(text: string, model = 'gpt-4'): number {
  const encoder = encoding_for_model(model)
  const tokens = encoder.encode(text)
  encoder.free()
  return tokens.length
}

Detailed Implementation: See references/observability.md for:

  • Cost estimation and budget tracking
  • Model selection strategies
  • Prompt caching patterns

8. Observability & Monitoring

Track LLM performance, costs, and quality in production.

Tools:

  • LangSmith: Tracing, evaluation, monitoring
  • LangFuse: Open-source observability
  • Custom Logging: Structured logs with metrics

Key Metrics:

  • Throughput (requests/minute)
  • Latency (P50, P95, P99)
  • Token usage and cost
  • Error rate
  • Quality scores (relevance, coherence, factuality)

Detailed Implementation: See references/observability.md for:

  • LangSmith and LangFuse integration
  • Custom logger implementation
  • Performance monitoring
  • Quality evaluation
  • Debugging and error analysis

Searching References

This skill includes detailed reference material. Use grep to find specific patterns:

# Find RAG patterns
grep -r "RAG" references/

# Search for specific vector database
grep -A 10 "Pinecone Setup" references/vector-databases.md

# Find agentic workflow examples
grep -B 5 "ReAct Pattern" references/agentic-workflows.md

# Locate function calling patterns
grep -n "parallel.*tool" references/function-calling.md

# Search for cost optimization
grep -i "cost\|pricing\|budget" references/observability.md

# Find all code examples for embeddings
grep -A 20 "async function.*embedding" references/

Best Practices

Context Management

  • ✅ Keep context windows under 75% of model limit
  • ✅ Use sliding window for long conversations
  • ✅ Summarize old messages before they scroll out
  • ✅ Remove redundant or irrelevant context

Embedding Strategy

  • ✅ Chunk documents to 500-1000 tokens
  • ✅ Overlap chunks by 10-20% for continuity
  • ✅ Include metadata (title, source, date) with chunks
  • ✅ Re-embed when source data changes

RAG Quality

  • ✅ Use hybrid search (semantic + keyword)
  • ✅ Re-rank results for relevance
  • ✅ Include citation/source in context
  • ✅ Set temperature low (0.1-0.3) for factual answers
  • ✅ Validate answers against retrieved context

Function Calling

  • ✅ Provide clear, concise function descriptions
  • ✅ Use strict JSON schema for parameters
  • ✅ Handle missing or invalid parameters gracefully
  • ✅ Limit to 10-20 tools to avoid confusion
  • ✅ Validate function outputs before returning to LLM

Cost Optimization

  • ✅ Use smaller models for simple tasks
  • ✅ Implement prompt caching for repeated content
  • ✅ Batch requests when possible
  • ✅ Set max_tokens to prevent runaway generation
  • ✅ Monitor usage with alerts for anomalies

Security

  • ✅ Validate and sanitize user inputs
  • ✅ Never include secrets in prompts
  • ✅ Implement rate limiting
  • ✅ Filter outputs for harmful content
  • ✅ Use separate API keys per environment

Templates

Use the provided templates for common AI patterns:

  • templates/rag-pipeline.ts - Basic RAG implementation
  • templates/agentic-workflow.ts - ReAct agent pattern

Examples

Complete RAG Chatbot

See examples/chatbot-with-rag/ for a full-stack implementation:

  • Vector database setup with document ingestion
  • RAG query with citations
  • Streaming chat interface
  • Cost tracking and monitoring

Checklists

AI Implementation Checklist

See checklists/ai-implementation.md for comprehensive validation covering:

  • Vector database setup and configuration
  • Embedding generation and chunking strategy
  • RAG pipeline with quality validation
  • Function calling with error handling
  • Streaming response implementation
  • Cost monitoring and budget alerts
  • Observability and logging
  • Security and input validation

Common Patterns

Semantic Caching

Reduce costs by caching similar queries:

const cache = new Map<string, { embedding: number[]; response: string }>()

async function cachedRAG(query: string) {
  const queryEmbedding = await createEmbedding(query)

  // Check if similar query exists in cache
  for (const [cachedQuery, cached] of cache.entries()) {
    const similarity = cosineSimilarity(queryEmbedding, cached.embedding)
    if (similarity > 0.95) {
      return cached.response
    }
  }

  // Not cached, perform RAG
  const response = await ragQuery(query)
  cache.set(query, { embedding: queryEmbedding, response })
  return response
}

Conversational Memory

Maintain context across multiple turns:

interface ConversationMemory {
  messages: Message[] // Last 10 messages
  summary?: string // Summary of older messages
}

async function getConversationContext(userId: string): Promise<Message[]> {
  const memory = await db.memory.findUnique({ where: { userId } })

  return [
    { role: 'system', content: `Previous conversation summary: ${memory.summary}` },
    ...memory.messages.slice(-5) // Last 5 messages
  ]
}

Prompt Engineering

Few-Shot Learning

Provide examples to guide LLM behavior:

const fewShotExamples = `
Example 1:
Input: "I love this product!"
Sentiment: Positive

Example 2:
Input: "It's okay, nothing special"
Sentiment: Neutral
`

// Include in system prompt

Chain of Thought (CoT)

Ask LLM to show reasoning:

const prompt = `${problem}\n\nLet's think step by step:`

Resources


Next Steps

After mastering AI-Native Development:

  1. Explore Streaming API Patterns skill for real-time AI responses
  2. Use Type Safety & Validation skill for AI input/output validation
  3. Apply Edge Computing Patterns skill for global AI deployment
  4. Reference Observability Patterns for production monitoring

Quick Install

/plugin add https://github.com/ArieGoldkin/ai-agent-hub/tree/main/ai-native-development

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

ArieGoldkin/ai-agent-hub
Path: skills/ai-native-development

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill