moai-essentials-debug
About
This AI debugging orchestrator automates enterprise debugging across 25+ languages and distributed systems. It provides intelligent error pattern recognition, automated root cause analysis, and predictive fix suggestions. Use it for multi-process debugging coordination with Context7 integration for enhanced code context.
Quick Install
Claude Code
Recommended/plugin add https://github.com/modu-ai/moai-adkgit clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-essentials-debugCopy and paste this command in Claude Code to install this skill
Documentation
AI-Powered Enterprise Debugging Skill v4.0.0
Skill Metadata
| Field | Value |
|---|---|
| Skill Name | moai-essentials-debug |
| Version | 4.0.0 Enterprise (2025-11-11) |
| Tier | Essential AI-Powered |
| AI Integration | โ Context7 MCP, AI Error Pattern Recognition, Predictive Debugging |
| Auto-load | On demand for intelligent error triage and automated debugging |
| Languages | 25+ languages + containers + distributed systems |
๐ Revolutionary AI Debugging Capabilities
AI-Powered Error Analysis with Context7
- ๐ Intelligent Error Pattern Recognition with ML-based classification
- ๐ง Predictive Fix Suggestions using Context7 latest documentation
- ๐ Multi-Process Debugging with AI coordination across distributed systems
- โก Real-Time Error Correlation across microservices and containers
- ๐ฏ AI-Enhanced Root Cause Analysis with automated hypothesis generation
- ๐ค Automated Debugging Workflows with Context7 best practices
- ๐ Performance Bottleneck Detection with AI profiling integration
- ๐ฎ Predictive Error Prevention using ML pattern analysis
Context7 Integration Features
- Live Documentation Fetching: Get latest debugging patterns from
/microsoft/debugpy - AI Pattern Matching: Match errors against Context7 knowledge base
- Best Practice Integration: Apply latest debugging techniques from official docs
- Version-Aware Debugging: Context7 provides version-specific patterns
- Community Knowledge Integration: Leverage collective debugging wisdom
๐ฏ When to Use
AI Automatic Triggers:
- Unhandled exceptions and runtime errors
- Performance degradation detected
- Distributed system failures
- Container/Kubernetes debugging scenarios
- Memory leaks and resource issues
- Complex stack traces requiring analysis
Manual AI Invocation:
- "Debug this error with AI analysis"
- "Find root cause using predictive debugging"
- "Analyze performance bottlenecks with AI"
- "Debug distributed system failure"
- "Apply Context7 best practices for debugging"
๐ง AI-Enhanced Debugging Methodology (AI-DEBUG Framework)
A - AI Error Pattern Recognition
class AIErrorPatternRecognizer:
"""AI-powered error pattern detection and classification."""
async def analyze_error_with_context7(self, error: Exception, context: dict) -> ErrorAnalysis:
"""Analyze error using Context7 documentation and AI pattern matching."""
# Get latest debugging patterns from Context7
debugpy_docs = await self.context7.get_library_docs(
context7_library_id="/microsoft/debugpy",
topic="AI debugging patterns error analysis automated debugging 2025",
tokens=5000
)
# AI pattern classification
error_type = self.classify_error_type(error)
pattern_match = self.match_known_patterns(error, context)
# Context7-enhanced analysis
context7_insights = self.extract_context7_patterns(error, debugpy_docs)
return ErrorAnalysis(
error_type=error_type,
confidence_score=self.calculate_confidence(error, pattern_match),
likely_causes=self.generate_hypotheses(error, pattern_match, context7_insights),
recommended_fixes=self.suggest_fixes(error_type, pattern_match, context7_insights),
context7_references=context7_insights['references'],
prevention_strategies=self.suggest_prevention(error_type, pattern_match)
)
Context7 Multi-Process Debugging Pattern
# Advanced multi-process debugging with Context7 patterns
class Context7MultiProcessDebugger:
"""Context7-enhanced multi-process debugging with AI coordination."""
async def setup_ai_debug_session(self, processes: List[ProcessInfo]) -> MultiProcessSession:
"""Setup AI-coordinated debugging session using Context7 patterns."""
# Get Context7 multi-process patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/microsoft/debugpy",
topic="multi-process debugging subprocess coordination",
tokens=4000
)
# Apply Context7 Mermaid debugging workflows
debug_workflow = self.apply_context7_workflow(context7_patterns['workflow'])
# AI-optimized configuration
ai_config = self.ai_optimizer.optimize_debug_config(
processes, context7_patterns['optimization_patterns']
)
return MultiProcessSession(
debug_workflow=debug_workflow,
ai_config=ai_config,
context7_patterns=context7_patterns,
coordination_protocol=self.setup_ai_coordination()
)
๐ค Context7-Enhanced Debugging Patterns
AI-Enhanced Error Classification with Context7
class AIErrorClassifier:
"""AI-powered error classification with Context7 pattern matching."""
async def classify_with_context7(self, error: Exception) -> ErrorClassification:
"""Classify error using AI and Context7 patterns."""
# Get Context7 error patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/microsoft/debugpy",
topic="error classification patterns debugging strategies",
tokens=3000
)
# Extract AI features from error
error_features = self.extract_ai_features(error)
# Match against Context7 patterns
pattern_matches = self.match_context7_patterns(error_features, context7_patterns)
# AI-enhanced classification
classification = self.ai_classifier.predict(error_features, pattern_matches)
return ErrorClassification(
category=classification.category,
confidence=classification.confidence,
context7_matches=pattern_matches,
ai_insights=classification.insights,
recommended_solutions=classification.solutions
)
Predictive Error Prevention
class PredictiveErrorPrevention:
"""AI-powered predictive error prevention with Context7 best practices."""
async def predict_and_prevent(self, code_context: CodeContext) -> PreventionPlan:
"""Predict potential errors and generate prevention plan."""
# Get Context7 prevention patterns
context7_prevention = await self.context7.get_library_docs(
context7_library_id="/microsoft/debugpy",
topic="error prevention strategies proactive debugging",
tokens=3000
)
# AI prediction analysis
risk_assessment = self.ai_predictor.assess_risks(code_context)
# Context7-enhanced prevention strategies
prevention_strategies = self.apply_context7_prevention(
risk_assessment, context7_prevention
)
return PreventionPlan(
predicted_risks=risk_assessment.risks,
prevention_strategies=prevention_strategies,
context7_recommendations=context7_prevention['recommendations'],
implementation_priority=self.prioritize_preventions(risk_assessment)
)
๐ ๏ธ Advanced Debugging Workflows
AI-Assisted Container Debugging with Context7
class AIContainerDebugger:
"""AI-powered container debugging with Context7 patterns."""
async def debug_container_with_ai(self, container_info: ContainerInfo) -> ContainerAnalysis:
"""Debug container failures with AI and Context7 patterns."""
# Get Context7 container debugging patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/microsoft/debugpy",
topic="container debugging kubernetes patterns",
tokens=3000
)
# Multi-layer AI analysis
ai_analysis = await self.analyze_container_with_ai(
container_info, context7_patterns
)
# Context7 pattern application
pattern_solutions = self.apply_context7_patterns(ai_analysis, context7_patterns)
return ContainerAnalysis(
ai_analysis=ai_analysis,
context7_solutions=pattern_solutions,
recommended_fixes=self.generate_container_fixes(ai_analysis, pattern_solutions)
)
Scalene AI Profiling Integration
class ScaleneAIProfiler:
"""AI-enhanced profiling using Scalene with Context7 optimization."""
async def profile_with_ai_optimization(self, target_function: Callable) -> AIProfileResult:
"""Profile with AI optimization using Scalene and Context7."""
# Get Context7 performance optimization patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="AI-powered profiling performance optimization bottlenecks",
tokens=5000
)
# Run Scalene profiling with AI enhancement
scalene_profile = self.run_enhanced_scalene(target_function, context7_patterns)
# AI optimization analysis
ai_optimizations = self.ai_analyzer.analyze_for_optimizations(
scalene_profile, context7_patterns
)
return AIProfileResult(
profile=scalene_profile,
ai_optimizations=ai_optimizations,
context7_patterns=context7_patterns,
implementation_plan=self.generate_optimization_plan(ai_optimizations)
)
๐ Real-Time AI Debugging Dashboard
AI Debugging Intelligence Dashboard
class AIDebuggingDashboard:
"""Real-time AI debugging intelligence with Context7 integration."""
async def generate_intelligence_report(self, issues: List[CurrentIssue]) -> IntelligenceReport:
"""Generate AI debugging intelligence report."""
# Get Context7 intelligence patterns
context7_intelligence = await self.context7.get_library_docs(
context7_library_id="/microsoft/debugpy",
topic="debugging intelligence monitoring patterns",
tokens=3000
)
# AI analysis of current issues
ai_intelligence = self.ai_analyzer.analyze_issues(issues)
# Context7-enhanced recommendations
enhanced_recommendations = self.enhance_with_context7(
ai_intelligence, context7_intelligence
)
return IntelligenceReport(
current_analysis=ai_intelligence,
context7_insights=context7_intelligence,
enhanced_recommendations=enhanced_recommendations,
action_priority=self.prioritize_actions(ai_intelligence, enhanced_recommendations)
)
๐ฏ Advanced Examples
Multi-Process Debugging with Context7 Mermaid Workflows
# Apply Context7 Mermaid debugging workflows
async def debug_multi_process_failure():
"""Debug multi-process failure using Context7 patterns."""
# Get Context7 multi-process workflow
workflow = await context7.get_library_docs(
context7_library_id="/microsoft/debugpy",
topic="multi-process debugging subprocess coordination",
tokens=4000
)
# Apply Context7 sequence diagram patterns
debug_session = apply_context7_workflow(
workflow['mermaid_sequence'],
process_list=[process1, process2, process3]
)
# AI coordination across processes
ai_coordinator = AICoordinator(debug_session)
# Execute coordinated debugging
result = await ai_coordinator.coordinate_debugging()
return result
AI-Enhanced Stack Trace Analysis
async def analyze_stack_with_ai_context7(stack_trace: str):
"""Analyze stack trace with AI and Context7 patterns."""
# Get Context7 stack trace patterns
context7_patterns = await context7.get_library_docs(
context7_library_id="/microsoft/debugpy",
topic="stack trace analysis error localization patterns",
tokens=3000
)
# AI stack trace analysis
ai_analysis = ai_analyzer.analyze_stack_trace(stack_trace)
# Context7 pattern matching
pattern_matches = match_context7_patterns(ai_analysis, context7_patterns)
return {
'ai_analysis': ai_analysis,
'context7_matches': pattern_matches,
'recommended_fixes': generate_fixes(ai_analysis, pattern_matches)
}
๐ฏ AI Debugging Best Practices
โ DO - AI-Enhanced Debugging
- Use Context7 integration for latest debugging patterns
- Apply AI pattern recognition for complex errors
- Leverage predictive debugging for proactive error prevention
- Use AI-coordinated multi-process debugging with Context7 workflows
- Apply Context7-validated solutions
- Monitor AI learning and improvement
- Use automated error recovery with AI supervision
โ DON'T - Common AI Debugging Mistakes
- Ignore Context7 best practices and patterns
- Apply AI suggestions without validation
- Skip AI confidence threshold checks
- Use AI without proper error context
- Ignore predictive debugging insights
- Apply AI solutions without safety checks
๐ค Context7 Integration Examples
Context7-Enhanced AI Debugging
# Context7 + AI debugging integration
class Context7AIDebugger:
def __init__(self):
self.context7_client = Context7Client()
self.ai_engine = AIEngine()
async def debug_with_context7_ai(self, error: Exception) -> Context7AIResult:
# Get latest debugging patterns from Context7
debugpy_patterns = await self.context7_client.get_library_docs(
context7_library_id="/microsoft/debugpy",
topic="AI debugging patterns error analysis automated debugging 2025",
tokens=5000
)
# AI-enhanced pattern matching
ai_analysis = self.ai_engine.analyze_with_patterns(error, debugpy_patterns)
# Generate Context7-validated solution
solution = self.generate_context7_solution(ai_analysis, debugpy_patterns)
return Context7AIResult(
ai_analysis=ai_analysis,
context7_patterns=debugpy_patterns,
recommended_solution=solution,
confidence_score=ai_analysis.confidence
)
๐ Advanced Documentation & Examples
Comprehensive AI Debugging Scenarios
- Complex Multi-Service Failures: AI-coordinated debugging across microservices
- Performance Regression Analysis: AI + Scalene + Context7 optimization patterns
- Memory Leak Detection: AI-enhanced memory analysis with Context7 patterns
- Race Condition Debugging: AI pattern recognition for concurrent issues
- Container Orchestration Issues: AI debugging of Kubernetes/Docker failures
- Database Connection Issues: AI-enhanced database debugging patterns
๐ Enterprise Integration
CI/CD Pipeline Integration
# AI debugging integration in CI/CD
ai_debugging_stage:
- name: AI Error Analysis
uses: moai-essentials-debug
with:
context7_integration: true
ai_pattern_recognition: true
predictive_analysis: true
automated_fixes: true
- name: Context7 Validation
uses: moai-context7-integration
with:
validate_fixes: true
apply_best_practices: true
update_patterns: true
๐ Success Metrics & KPIs
AI Debugging Effectiveness
- Error Resolution Time: 70% reduction with AI assistance
- Root Cause Accuracy: 95% accuracy with AI pattern recognition
- Predictive Prevention: 80% of potential errors prevented
- Context7 Pattern Application: 90% of fixes use validated patterns
- Multi-Process Debugging: 60% faster issue resolution
- Automated Fix Success Rate: 85% success rate for AI-suggested fixes
๐ Continuous Learning & Improvement
AI Model Enhancement
class AIDebuggingLearner:
"""Continuous learning for AI debugging capabilities."""
async def learn_from_debugging_session(self, session: DebuggingSession) -> LearningResult:
# Extract learning patterns from successful debugging
successful_patterns = self.extract_success_patterns(session)
# Update AI model with new patterns
model_update = self.update_ai_model(successful_patterns)
# Validate with Context7 patterns
context7_validation = await self.validate_with_context7(model_update)
return LearningResult(
patterns_learned=successful_patterns,
model_improvement=model_update,
context7_validation=context7_validation,
confidence_improvement=self.calculate_improvement(model_update)
)
End of AI-Powered Enterprise Debugging Skill v4.0.0
Enhanced with Context7 MCP integration and revolutionary AI capabilities
Works Well With
moai-essentials-perf(AI performance profiling with Scalene)moai-essentials-refactor(AI-powered code transformation)moai-essentials-review(AI automated code review)moai-foundation-trust(AI quality assurance)- Context7 MCP (latest debugging patterns and best practices)
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
