splitting-datasets
About
This skill enables Claude to automatically split datasets into training, validation, and test sets for machine learning. It generates the necessary Python code for data partitioning when triggered by terms like "train-test split" or "data partitioning." Use it during data preparation to facilitate proper model development and evaluation workflows.
Documentation
Overview
This skill automates the process of dividing a dataset into subsets for training, validating, and testing machine learning models. It ensures proper data preparation and facilitates robust model evaluation.
How It Works
- Analyze Request: The skill analyzes the user's request to determine the dataset to be split and the desired proportions for each subset.
- Generate Code: Based on the request, the skill generates Python code utilizing standard ML libraries to perform the data splitting.
- Execute Splitting: The code is executed to split the dataset into training, validation, and testing sets according to the specified ratios.
When to Use This Skill
This skill activates when you need to:
- Prepare a dataset for machine learning model training.
- Create training, validation, and testing sets.
- Partition data to evaluate model performance.
Examples
Example 1: Splitting a CSV file
User request: "Split the data in 'my_data.csv' into 70% training, 15% validation, and 15% testing sets."
The skill will:
- Generate Python code to read the 'my_data.csv' file.
- Execute the code to split the data according to the specified proportions, creating 'train.csv', 'validation.csv', and 'test.csv' files.
Example 2: Creating a Train-Test Split
User request: "Create a train-test split of 'large_dataset.csv' with an 80/20 ratio."
The skill will:
- Generate Python code to load 'large_dataset.csv'.
- Execute the code to split the dataset into 80% training and 20% testing sets, saving them as 'train.csv' and 'test.csv'.
Best Practices
- Data Integrity: Verify that the splitting process maintains the integrity of the data, ensuring no data loss or corruption.
- Stratification: Consider stratification when splitting imbalanced datasets to maintain class distributions in each subset.
- Randomization: Ensure the splitting process is randomized to avoid bias in the resulting datasets.
Integration
This skill can be integrated with other data processing and model training tools within the Claude Code ecosystem to create a complete machine learning workflow.
Quick Install
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skills/tree/main/dataset-splitterCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
