Back to Skills

database-schema-designer

OneWave-AI
Updated Today
15 views
11
4
11
View on GitHub
Metaaidesigndata

About

This Claude Skill designs optimized database schemas for both SQL and NoSQL databases, creating tables, relationships, indexes, and constraints. It generates ERD diagrams, migration scripts, and follows data modeling best practices. Use it when you need database design, schema optimization, or data architecture planning for your application.

Documentation

Database Schema Designer

Design optimized, scalable database schemas with proper relationships and indexes.

Instructions

When a user needs database schema design:

  1. Gather Requirements:

    • What type of database (PostgreSQL, MySQL, MongoDB, etc.)?
    • What is the application domain?
    • What are the main entities/resources?
    • What queries will be most common?
    • Expected data volume and growth?
    • Performance requirements?
    • Specific constraints or compliance needs?
  2. Design Schema Following Best Practices:

    For SQL Databases:

    • Identify entities and their attributes
    • Define primary keys (prefer UUIDs for distributed systems)
    • Establish relationships (1:1, 1:N, N:M)
    • Normalize to 3NF (unless denormalization needed for performance)
    • Add appropriate indexes
    • Define foreign key constraints
    • Include timestamps (created_at, updated_at)
    • Add soft delete flags if needed
    • Plan for data archival

    For NoSQL Databases:

    • Design for access patterns (query-first approach)
    • Embed vs reference decision
    • Plan for denormalization
    • Design indexes for common queries
    • Consider document size limits
    • Plan for eventual consistency
  3. Generate Complete Schema:

    SQL Schema Output:

    -- [Entity Name] Table
    -- Purpose: [Description]
    
    CREATE TABLE [table_name] (
      id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
      [field_name] [TYPE] [CONSTRAINTS],
      created_at TIMESTAMP NOT NULL DEFAULT NOW(),
      updated_at TIMESTAMP NOT NULL DEFAULT NOW(),
      deleted_at TIMESTAMP
    );
    
    -- Indexes
    CREATE INDEX idx_[table]_[field] ON [table]([field]);
    CREATE INDEX idx_[table]_[field1]_[field2] ON [table]([field1], [field2]);
    
    -- Foreign Keys
    ALTER TABLE [child_table]
      ADD CONSTRAINT fk_[constraint_name]
      FOREIGN KEY ([foreign_key_field])
      REFERENCES [parent_table](id)
      ON DELETE CASCADE;
    

    NoSQL Schema Output (MongoDB example):

    // [Collection Name]
    // Purpose: [Description]
    
    {
      _id: ObjectId,
      [field_name]: [type],
    
      // Embedded document
      [embedded_object]: {
        field1: type,
        field2: type
      },
    
      // Reference
      [related_id]: ObjectId,  // Ref to [other_collection]
    
      created_at: ISODate,
      updated_at: ISODate
    }
    
    // Indexes
    db.[collection].createIndex({ field: 1 })
    db.[collection].createIndex({ field1: 1, field2: -1 })
    db.[collection].createIndex({ field: "text" })  // Text search
    
  4. Create Entity Relationship Diagram (text format):

    ┌─────────────────────┐
    │      users          │
    ├─────────────────────┤
    │ id (PK)             │
    │ email (UNIQUE)      │
    │ name                │
    │ created_at          │
    └──────────┬──────────┘
               │
               │ 1:N
               │
    ┌──────────▼──────────┐
    │      posts          │
    ├─────────────────────┤
    │ id (PK)             │
    │ user_id (FK)        │
    │ title               │
    │ content             │
    │ created_at          │
    └──────────┬──────────┘
               │
               │ N:M (via post_tags)
               │
    ┌──────────▼──────────┐
    │       tags          │
    ├─────────────────────┤
    │ id (PK)             │
    │ name (UNIQUE)       │
    └─────────────────────┘
    
  5. Provide Migration Scripts:

    -- Migration: create_users_table
    -- Date: 2024-01-15
    
    BEGIN;
    
    CREATE TABLE users (
      id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
      email VARCHAR(255) NOT NULL UNIQUE,
      name VARCHAR(255) NOT NULL,
      password_hash VARCHAR(255) NOT NULL,
      created_at TIMESTAMP NOT NULL DEFAULT NOW(),
      updated_at TIMESTAMP NOT NULL DEFAULT NOW()
    );
    
    CREATE INDEX idx_users_email ON users(email);
    CREATE INDEX idx_users_created_at ON users(created_at);
    
    COMMIT;
    
    -- Rollback
    BEGIN;
    DROP TABLE users;
    COMMIT;
    
  6. Format Complete Output:

    🗄️ DATABASE SCHEMA DESIGN
    Database: [PostgreSQL/MySQL/MongoDB/etc.]
    Domain: [Application type]
    
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    📋 ENTITY RELATIONSHIP DIAGRAM
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    
    [ASCII ERD]
    
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    📊 TABLE DEFINITIONS
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    
    [SQL CREATE TABLE statements]
    
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    🔗 RELATIONSHIPS
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    
    [Foreign key constraints]
    
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    ⚡ INDEXES
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    
    [Index definitions with rationale]
    
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    🔄 MIGRATION SCRIPTS
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    
    [Up and down migrations]
    
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    💡 OPTIMIZATION NOTES
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    
    Performance Considerations:
    • [Index strategy]
    • [Partitioning recommendations]
    • [Denormalization opportunities]
    
    Scaling Strategy:
    • [Sharding approach]
    • [Read replicas]
    • [Caching layer]
    
    Data Integrity:
    • [Constraint strategy]
    • [Validation rules]
    • [Audit logging]
    
  7. Schema Design Best Practices:

    Naming Conventions:

    • Use snake_case for table and column names
    • Pluralize table names (users, posts)
    • Use descriptive foreign key names (user_id, not uid)
    • Prefix indexes (idx_table_column)
    • Prefix constraints (fk_, uk_, ck_)

    Data Types:

    • Use appropriate types (INT vs BIGINT, VARCHAR vs TEXT)
    • Consider storage size
    • Use ENUM for fixed sets of values
    • Use JSON/JSONB for flexible attributes
    • Use proper date/time types (TIMESTAMP vs DATETIME)

    Indexes:

    • Index foreign keys
    • Index columns in WHERE clauses
    • Composite indexes for multi-column queries
    • Consider covering indexes
    • Monitor index usage and remove unused ones

    Relationships:

    • Always use foreign keys in relational DBs
    • Cascade deletes where appropriate
    • Consider soft deletes for audit trails
    • Use junction tables for many-to-many

    Performance:

    • Denormalize for read-heavy workloads
    • Partition large tables
    • Use materialized views for complex queries
    • Consider read replicas
    • Plan for archival of old data

Example Triggers

  • "Design a database schema for an e-commerce platform"
  • "Create SQL tables for a blog system"
  • "Help me design a MongoDB schema for a social network"
  • "Optimize this database schema for performance"
  • "Generate migration scripts for my schema"

Output Quality

Ensure schemas:

  • Follow normalization principles (unless deliberately denormalized)
  • Include all necessary constraints
  • Have appropriate indexes
  • Use proper data types
  • Include timestamps
  • Have clear relationships
  • Consider scalability
  • Include migration scripts
  • Follow naming conventions
  • Are documented with comments
  • Consider performance implications
  • Include rollback capability

Generate production-ready, optimized database schemas that scale.

Quick Install

/plugin add https://github.com/OneWave-AI/claude-skills/tree/main/database-schema-designer

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

OneWave-AI/claude-skills
Path: database-schema-designer

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill