Back to Skills

moai-jit-docs-enhanced

modu-ai
Updated Yesterday
23 views
424
78
424
View on GitHub
Documentationwordai

About

This enhanced JIT documentation system intelligently discovers, loads, and caches relevant docs based on user intent and project context. Use it when developers need specific documentation, are working with new technologies, or when context indicates documentation gaps. It provides context-aware, intelligent loading of tech docs and domain knowledge.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/modu-ai/moai-adk
Git CloneAlternative
git clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-jit-docs-enhanced

Copy and paste this command in Claude Code to install this skill

Documentation

Enhanced JIT Documentation Loader

Skill Metadata

FieldValue
Version1.0.0
TierAlfred (Knowledge Management)
Auto-loadWhen documentation gaps detected
PurposeIntelligent, context-aware document loading

What It Does

Advanced Just-In-Time documentation loading system that intelligently discovers, retrieves, and caches relevant documentation based on user intent, project context, and knowledge gaps. Enhances Alfred's capabilities by bringing in the right documentation at the right time.

Core capabilities:

  • ✅ Intent-based document discovery
  • ✅ Context-aware loading strategies
  • ✅ Intelligent caching and retrieval
  • ✅ Multi-source documentation aggregation
  • ✅ Domain-specific knowledge integration
  • ✅ Real-time web research for latest information
  • ✅ Documentation quality assessment
  • ✅ Automatic relevance ranking

When to Use

  • ✅ When user questions indicate knowledge gaps
  • ✅ When working with unfamiliar technologies or frameworks
  • ✅ When domain-specific expertise is needed
  • ✅ When answering technical questions with precision
  • ✅ When implementing new features or patterns
  • ✅ When troubleshooting complex issues
  • ✅ When best practices guidance is required

Intent Detection Patterns

1. Question-Based Triggers

# User asks specific questions
"how do I implement JWT in FastAPI?"
"What's the best way to handle database migrations?"
"How does React useEffect work exactly?"
"What are the security implications of JWT?"

# Trigger: Load relevant documentation
Skill("moai-jit-docs-enhanced")
# → Loads FastAPI JWT authentication docs
# → Loads database migration best practices
# → Loads React hooks documentation
# → Loads JWT security analysis

2. Technology-Specific Triggers

# Technology keywords detected
"FastAPI", "React", "PostgreSQL", "Docker", "Kubernetes"
"pytest", "TypeScript", "GraphQL", "Redis", "NGINX"

# Trigger: Load technology-specific documentation
Skill("moai-jit-docs-enhanced")
# → Loads official docs, tutorials, best practices

3. Domain-Specific Triggers

# Domain keywords detected
"authentication", "authorization", "security", "performance"
"database", "api", "frontend", "backend", "devops"

# Trigger: Load domain expertise documentation
Skill("moai-jit-docs-enhanced")
# → Loads domain-specific patterns and guidelines

4. Pattern-Based Triggers

# Implementation patterns
"implement", "create", "build", "design", "architecture"
"best practices", "optimization", "troubleshooting", "debugging"

# Trigger: Load implementation guidance
Skill("moai-jit-docs-enhanced")
# → Loads implementation patterns and examples

Documentation Sources

1. Local Project Documentation

# Primary sources (highest priority)
.moai/docs/                    # Project-specific docs
.moai/specs/                   # Requirements and specifications
README.md                      # General project information
CHANGELOG.md                   # Version history
docs/                          # Comprehensive documentation

2. Official Documentation

# Technology-specific official sources
official_docs = {
    "FastAPI": "https://fastapi.tiangolo.com/",
    "React": "https://react.dev/",
    "PostgreSQL": "https://www.postgresql.org/docs/",
    "Docker": "https://docs.docker.com/",
    "Kubernetes": "https://kubernetes.io/docs/"
}

3. Community Resources

# High-quality community resources
community_resources = {
    "Stack Overflow": "Highly-voted answers",
    "GitHub Discussions": "Official project discussions",
    "Dev.to": "Tutorial articles",
    "Medium": "Technical deep-dives"
}

4. Real-Time Web Research

# Dynamic content for latest information
def get_latest_info(query):
    return WebSearch(f"{query} best practices 2024 2025")

Loading Strategies

1. Intent Analysis

def analyze_user_intent(user_input, context):
    """Determine what documentation is needed"""
    intent = {
        "technologies": extract_technologies(user_input),
        "domains": extract_domains(user_input),
        "question_type": classify_question(user_input),
        "complexity": assess_complexity(user_input),
        "urgency": determine_urgency(user_input)
    }
    return intent

2. Source Prioritization

def prioritize_documentation_sources(intent):
    """Rank sources based on intent and context"""
    priorities = []

    # 1. Local project docs (always first)
    if has_local_docs():
        priorities.append(("local", 1.0))

    # 2. Official docs (high authority)
    for tech in intent["technologies"]:
        if official_docs.get(tech):
            priorities.append(("official", 0.9))

    # 3. Community resources (practical examples)
    if intent["question_type"] == "implementation":
        priorities.append(("community", 0.7))

    # 4. Web research (latest info)
    if intent["urgency"] == "latest":
        priorities.append(("web", 0.8))

    return sorted(priorities, key=lambda x: x[1], reverse=True)

3. Intelligent Caching

class DocumentationCache:
    """Smart caching system for documentation"""

    def __init__(self):
        self.cache = {}
        self.relevance_scores = {}
        self.access_times = {}

    def get(self, key, context):
        """Get cached documentation if still relevant"""
        if key in self.cache:
            # Check relevance based on context
            if self.is_relevant(key, context):
                self.update_access_time(key)
                return self.cache[key]
            else:
                # Remove outdated content
                self.remove(key)
        return None

    def store(self, key, content, relevance_score):
        """Store documentation with relevance score"""
        self.cache[key] = content
        self.relevance_scores[key] = relevance_score
        self.access_times[key] = datetime.now()

Quality Assessment

1. Content Quality Metrics

def assess_documentation_quality(content):
    """Evaluate documentation quality"""
    quality_score = 0.0

    # Authority (30%)
    if is_official_source(content):
        quality_score += 0.3
    elif is_reputable_community(content):
        quality_score += 0.2

    # Recency (25%)
    if is_recent(content, months=6):
        quality_score += 0.25
    elif is_recent(content, months=12):
        quality_score += 0.15

    # Completeness (25%)
    if has_examples(content):
        quality_score += 0.1
    if has_code_samples(content):
        quality_score += 0.1
    if has_explanations(content):
        quality_score += 0.05

    # Relevance (20%)
    relevance = calculate_relevance(content, user_context)
    quality_score += relevance * 0.2

    return min(quality_score, 1.0)

2. Relevance Ranking

def rank_documentation_results(results, user_context):
    """Rank documentation by relevance to user context"""
    ranked_results = []

    for result in results:
        relevance_score = calculate_relevance(result, user_context)
        quality_score = assess_documentation_quality(result)

        # Combined score: 70% relevance, 30% quality
        combined_score = (relevance_score * 0.7) + (quality_score * 0.3)

        ranked_results.append({
            "content": result,
            "relevance": relevance_score,
            "quality": quality_score,
            "combined": combined_score
        })

    return sorted(ranked_results, key=lambda x: x["combined"], reverse=True)

Integration Examples

Example 1: Authentication Implementation

# User asks: "How do I implement JWT authentication in FastAPI?"

# 1. Intent Analysis
intent = {
    "technologies": ["FastAPI", "JWT"],
    "domains": ["authentication", "security"],
    "question_type": "implementation",
    "complexity": "medium"
}

# 2. Documentation Loading
Skill("moai-jit-docs-enhanced")

# 3. Loaded Documentation
docs_loaded = [
    "FastAPI Security - OAuth2 with JWT (Official)",
    "JWT Best Practices for APIs (Community)",
    "FastAPI JWT Implementation Tutorial (High-quality)",
    "JWT Security Considerations (Latest research)"
]

# 4. Enhanced Response
Alfred can now provide comprehensive, accurate guidance

Example 2: Database Optimization

# User asks: "My PostgreSQL queries are slow, how can I optimize them?"

# 1. Intent Detection
# Technologies: PostgreSQL
# Domains: database, performance, optimization
# Question Type: troubleshooting

# 2. JIT Documentation Loading
Skill("moai-jit-docs-enhanced")

# 3. Loaded Resources
performance_docs = [
    "PostgreSQL Query Optimization Guide (Official)",
    "EXPLAIN ANALYZE Best Practices (Community)",
    "Database Indexing Strategies (Expert article)",
    "PostgreSQL Performance Tuning (Latest version)"
]

# 4. Contextual Response
Alfred provides specific, actionable optimization advice

Example 3: New Technology Adoption

# User wants to implement GraphQL in existing project

# 1. Technology Detection
# New technology: GraphQL
# Context: Existing REST API project
# Need: Migration guidance

# 2. Comprehensive Documentation Loading
Skill("moai-jit-docs-enhanced")

# 3. Multi-Source Documentation
graphql_docs = [
    "GraphQL Official Documentation",
    "Apollo Server Best Practices",
    "REST to GraphQL Migration Guide",
    "GraphQL Schema Design Patterns",
    "Performance Optimization for GraphQL"
]

# 4. Strategic Guidance
Alfred provides complete migration strategy

Performance Optimization

1. Caching Strategy

# Multi-level caching
cache_levels = {
    "session": {},      # Current session only
    "project": {},     # Project-specific cache
    "global": {}       # Cross-project cache
}

# Cache eviction policies
def evict_old_cache():
    """Remove outdated documentation"""
    # Remove content older than 30 days
    # Keep high-authority sources longer
    # Prioritize frequently accessed content

2. Lazy Loading

def load_documentation_on_demand():
    """Load documentation only when needed"""
    # Don't preload everything
    # Load based on user interaction
    # Cache for future use
    pass

3. Batch Processing

def batch_web_searches(queries):
    """Combine multiple searches for efficiency"""
    # Group similar queries
    # Use WebSearch for multiple terms
    # Process results in parallel
    pass

Error Handling

1. Network Failures

if web_search_fails():
    # Fall back to cached content
    # Use local documentation
    # Provide partial results

2. Content Quality Issues

if content_quality_low():
    # Try alternative sources
    # Indicate uncertainty
    # Request user clarification

3. Relevance Mismatches

if relevance_score < threshold:
    # Refine search query
    # Ask user for clarification
    # Broaden search scope

Usage Statistics and Learning

1. Track Effectiveness

def track_documentation_usage(doc_id, user_feedback):
    """Learn which documentation is most helpful"""
    stats[doc_id] = {
        "usage_count": stats[doc_id]["usage_count"] + 1,
        "helpful_votes": stats[doc_id]["helpful_votes"] + user_feedback,
        "contexts": stats[doc_id]["contexts"].append(current_context)
    }

2. Improve Source Selection

def improve_source_ranking():
    """Learn which sources work best for different contexts"""
    # Analyze usage patterns
    # Adjust source priorities
    # Personalize recommendations

End of Skill | Intelligent documentation loading for enhanced context and accuracy

GitHub Repository

modu-ai/moai-adk
Path: src/moai_adk/templates/.claude/skills/moai-jit-docs-enhanced
agentic-aiagentic-codingagentic-workflowclaudeclaudecodevibe-coding

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill