Back to Skills

azure-functions

aj-geddes
Updated Today
25 views
7
7
View on GitHub
Metageneral

About

This Claude Skill enables developers to create serverless Azure Functions for event-driven computing without managing infrastructure. It supports triggers, bindings, authentication, and monitoring for building scalable applications like HTTP APIs, message processing, and scheduled jobs. Use it to quickly deploy serverless backends that integrate with Azure services using the Azure CLI and Functions Core Tools.

Documentation

Azure Functions

Overview

Azure Functions enables serverless computing on Microsoft Azure. Build event-driven applications with automatic scaling, flexible bindings to various Azure services, and integrated monitoring through Application Insights.

When to Use

  • HTTP APIs and webhooks
  • Message-driven processing (Service Bus, Event Hub)
  • Scheduled jobs and CRON expressions
  • File and blob processing
  • Queue-based workflows
  • Real-time data processing
  • Microservices and backend logic
  • Integration with Azure ecosystem services

Implementation Examples

1. Azure Function Creation with Azure CLI

# Install Azure Functions Core Tools
curl https://aka.ms/install-artifacts-ubuntu.sh | bash

# Login to Azure
az login

# Create resource group
az group create --name myapp-rg --location eastus

# Create storage account (required for Functions)
az storage account create \
  --name myappstore \
  --location eastus \
  --resource-group myapp-rg \
  --sku Standard_LRS

# Create Function App
az functionapp create \
  --resource-group myapp-rg \
  --consumption-plan-location eastus \
  --runtime node \
  --runtime-version 18 \
  --functions-version 4 \
  --name myapp-function \
  --storage-account myappstore

# Create function in app
func new --name HttpTrigger --template "HTTP trigger"

# Configure authentication
az functionapp auth update \
  --resource-group myapp-rg \
  --name myapp-function \
  --enabled true \
  --action RedirectToLoginPage \
  --default-provider AzureActiveDirectory

# Deploy function
func azure functionapp publish myapp-function

# Check deployment
az functionapp list --output table

# Get function details
az functionapp function show \
  --resource-group myapp-rg \
  --name myapp-function \
  --function-name HttpTrigger

2. Azure Function Implementation (Node.js)

// HttpTrigger/index.js
module.exports = async function (context, req) {
  context.log('HTTP trigger function processed request.');

  // Extract request data
  const name = req.query.name || (req.body && req.body.name);
  const requestId = context.traceContext.traceparent;

  try {
    // Validate input
    if (!name) {
      return {
        status: 400,
        body: { error: 'Name parameter is required' }
      };
    }

    // Business logic
    const response = {
      message: `Hello ${name}!`,
      timestamp: new Date().toISOString(),
      requestId: requestId
    };

    // Log to Application Insights
    context.log({
      level: 'info',
      message: 'Request processed successfully',
      name: name,
      requestId: requestId
    });

    return {
      status: 200,
      headers: {
        'Content-Type': 'application/json',
        'X-Request-ID': requestId
      },
      body: response
    };
  } catch (error) {
    context.log.error('Error processing request:', error);

    return {
      status: 500,
      body: { error: 'Internal server error' }
    };
  }
};

// TimerTrigger/index.js
module.exports = async function (context, myTimer) {
  const timeStamp = new Date().toISOString();

  if (myTimer.isPastDue) {
    context.log('Timer function is running late!');
  }

  // Process scheduled job
  context.log(`Timer trigger function ran at ${timeStamp}`);
  context.log('Processing batch job...');

  // Simulate work
  await new Promise(resolve => setTimeout(resolve, 1000));

  context.log('Batch job completed');
};

// ServiceBusQueueTrigger/index.js
module.exports = async function (context, mySbMsg) {
  context.log('ServiceBus queue trigger function processed message:', mySbMsg);

  try {
    const messageBody = typeof mySbMsg === 'string' ? JSON.parse(mySbMsg) : mySbMsg;

    // Process message
    await processMessage(messageBody);

    context.log('Message processed successfully');
  } catch (error) {
    context.log.error('Error processing message:', error);
    throw error; // Re-queue message
  }
};

async function processMessage(messageBody) {
  // Business logic here
  return true;
}

3. Azure Functions with Terraform

# functions.tf
terraform {
  required_providers {
    azurerm = {
      source  = "hashicorp/azurerm"
      version = "~> 3.0"
    }
  }
}

provider "azurerm" {
  features {
    virtual_machine {
      delete_os_disk_on_delete            = true
      graceful_shutdown                   = false
      skip_shutdown_and_force_delete       = false
    }
  }
}

variable "environment" {
  default = "dev"
}

variable "location" {
  default = "eastus"
}

# Resource group
resource "azurerm_resource_group" "main" {
  name     = "myapp-rg-${var.environment}"
  location = var.location
}

# Storage account for Function App
resource "azurerm_storage_account" "function_storage" {
  name                     = "myappstore${var.environment}"
  resource_group_name      = azurerm_resource_group.main.name
  location                 = azurerm_resource_group.main.location
  account_tier             = "Standard"
  account_replication_type = "LRS"

  identity {
    type = "SystemAssigned"
  }

  tags = {
    environment = var.environment
  }
}

# Application Insights
resource "azurerm_application_insights" "main" {
  name                = "myapp-insights-${var.environment}"
  location            = azurerm_resource_group.main.location
  resource_group_name = azurerm_resource_group.main.name
  application_type    = "web"

  retention_in_days = 30
}

# App Service Plan
resource "azurerm_service_plan" "function_plan" {
  name                = "myapp-plan-${var.environment}"
  location            = azurerm_resource_group.main.location
  resource_group_name = azurerm_resource_group.main.name
  os_type             = "Linux"
  sku_name            = "Y1" # Consumption plan

  tags = {
    environment = var.environment
  }
}

# Function App
resource "azurerm_linux_function_app" "main" {
  name                = "myapp-function-${var.environment}"
  location            = azurerm_resource_group.main.location
  resource_group_name = azurerm_resource_group.main.name
  service_plan_id     = azurerm_service_plan.function_plan.id

  storage_account_name       = azurerm_storage_account.function_storage.name
  storage_account_access_key = azurerm_storage_account.function_storage.primary_access_key

  app_settings = {
    APPINSIGHTS_INSTRUMENTATIONKEY             = azurerm_application_insights.main.instrumentation_key
    APPLICATIONINSIGHTS_CONNECTION_STRING      = azurerm_application_insights.main.connection_string
    AzureWebJobsStorage                        = azurerm_storage_account.function_storage.primary_blob_connection_string
    WEBSITE_NODE_DEFAULT_VERSION               = "~18"
    FUNCTIONS_EXTENSION_VERSION                = "~4"
    FUNCTIONS_WORKER_RUNTIME                   = "node"
    ENABLE_INIT_LOGGING                        = true
    WEBSITE_RUN_FROM_PACKAGE                   = 1
  }

  site_config {
    application_insights_key             = azurerm_application_insights.main.instrumentation_key
    application_insights_connection_string = azurerm_application_insights.main.connection_string

    cors {
      allowed_origins = ["https://example.com"]
    }

    http2_enabled = true
  }

  https_only = true
  identity {
    type = "SystemAssigned"
  }

  tags = {
    environment = var.environment
  }
}

# Key Vault for secrets
resource "azurerm_key_vault" "function_secrets" {
  name                = "myappkv${var.environment}"
  location            = azurerm_resource_group.main.location
  resource_group_name = azurerm_resource_group.main.name
  tenant_id           = data.azurerm_client_config.current.tenant_id
  sku_name            = "standard"

  access_policy {
    tenant_id = data.azurerm_client_config.current.tenant_id
    object_id = azurerm_linux_function_app.main.identity[0].principal_id

    secret_permissions = [
      "Get",
      "List"
    ]
  }

  tags = {
    environment = var.environment
  }
}

# Store database password in Key Vault
resource "azurerm_key_vault_secret" "db_password" {
  name         = "db-password"
  value        = "MySecurePassword123!"
  key_vault_id = azurerm_key_vault.function_secrets.id
}

# Diagnostic settings
resource "azurerm_monitor_diagnostic_setting" "function_logs" {
  name               = "function-logs"
  target_resource_id = azurerm_linux_function_app.main.id

  log_analytics_workspace_id = azurerm_log_analytics_workspace.main.id

  enabled_log {
    category = "FunctionAppLogs"
  }

  metric {
    category = "AllMetrics"
  }
}

# Log Analytics Workspace
resource "azurerm_log_analytics_workspace" "main" {
  name                = "myapp-logs-${var.environment}"
  location            = azurerm_resource_group.main.location
  resource_group_name = azurerm_resource_group.main.name
  sku                 = "PerGB2018"

  retention_in_days = 30
}

data "azurerm_client_config" "current" {}

output "function_app_url" {
  value = "https://${azurerm_linux_function_app.main.default_hostname}"
}

output "app_insights_key" {
  value     = azurerm_application_insights.main.instrumentation_key
  sensitive = true
}

4. Function Bindings Configuration

{
  "scriptFile": "index.js",
  "bindings": [
    {
      "authLevel": "anonymous",
      "type": "httpTrigger",
      "direction": "in",
      "name": "req",
      "methods": ["get", "post"],
      "route": "api/{*route}"
    },
    {
      "type": "http",
      "direction": "out",
      "name": "$return"
    },
    {
      "type": "queue",
      "direction": "out",
      "name": "myQueueItem",
      "queueName": "myqueue",
      "connection": "AzureWebJobsStorage"
    },
    {
      "type": "serviceBus",
      "direction": "in",
      "name": "mySbMsg",
      "queueName": "myqueue",
      "connection": "ServiceBusConnection",
      "cardinality": "one"
    },
    {
      "type": "blob",
      "direction": "in",
      "name": "inputBlob",
      "path": "input/{name}",
      "connection": "AzureWebJobsStorage"
    },
    {
      "type": "blob",
      "direction": "out",
      "name": "outputBlob",
      "path": "output/{name}",
      "connection": "AzureWebJobsStorage"
    }
  ]
}

Best Practices

✅ DO

  • Use managed identity for Azure services
  • Store secrets in Key Vault
  • Enable Application Insights
  • Implement idempotent functions
  • Use durable functions for long-running operations
  • Handle exceptions and failures
  • Monitor function execution
  • Use bindings instead of SDK calls

❌ DON'T

  • Store secrets in code or configuration
  • Ignore Application Insights
  • Create functions without error handling
  • Use blocking operations
  • Create long-running functions without Durable Functions
  • Ignore monitoring and logging

Monitoring

  • Application Insights for tracing and metrics
  • Azure Monitor for overall health
  • Log Analytics for log analysis
  • Function metrics (execution count, duration)
  • Custom telemetry and events

Resources

Quick Install

/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/azure-functions

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

aj-geddes/useful-ai-prompts
Path: skills/azure-functions

Related Skills

subagent-driven-development

Development

This skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.

View skill

algorithmic-art

Meta

This Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.

View skill

executing-plans

Design

Use the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.

View skill

cost-optimization

Other

This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.

View skill