Back to Skills

convex-agents

majiayu000
Updated Today
1 views
58
9
58
View on GitHub
Metaconvexagentsaillmtoolsragworkflows

About

The convex-agents skill helps developers build persistent, stateful AI agents using Convex's backend platform. It provides key capabilities like thread management, tool integration, streaming responses, and RAG patterns, all with automatic state persistence. Use this skill when you need to create agents that maintain conversation history and execute tools within the Convex ecosystem.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/convex-agents

Copy and paste this command in Claude Code to install this skill

Documentation

Convex Agents

Build persistent, stateful AI agents with Convex including thread management, tool integration, streaming responses, RAG patterns, and workflow orchestration.

Documentation Sources

Before implementing, do not assume; fetch the latest documentation:

Instructions

Why Convex for AI Agents

  • Persistent State - Conversation history survives restarts
  • Real-time Updates - Stream responses to clients automatically
  • Tool Execution - Run Convex functions as agent tools
  • Durable Workflows - Long-running agent tasks with reliability
  • Built-in RAG - Vector search for knowledge retrieval

Setting Up Convex Agent

npm install @convex-dev/agent ai openai
// convex/agent.ts
import { Agent } from "@convex-dev/agent";
import { components } from "./_generated/api";
import { OpenAI } from "openai";

const openai = new OpenAI();

export const agent = new Agent(components.agent, {
  chat: openai.chat,
  textEmbedding: openai.embeddings,
});

Thread Management

// convex/threads.ts
import { mutation, query } from "./_generated/server";
import { v } from "convex/values";
import { agent } from "./agent";

// Create a new conversation thread
export const createThread = mutation({
  args: {
    userId: v.id("users"),
    title: v.optional(v.string()),
  },
  returns: v.id("threads"),
  handler: async (ctx, args) => {
    const threadId = await agent.createThread(ctx, {
      userId: args.userId,
      metadata: {
        title: args.title ?? "New Conversation",
        createdAt: Date.now(),
      },
    });
    return threadId;
  },
});

// List user's threads
export const listThreads = query({
  args: { userId: v.id("users") },
  returns: v.array(v.object({
    _id: v.id("threads"),
    title: v.string(),
    lastMessageAt: v.optional(v.number()),
  })),
  handler: async (ctx, args) => {
    return await agent.listThreads(ctx, {
      userId: args.userId,
    });
  },
});

// Get thread messages
export const getMessages = query({
  args: { threadId: v.id("threads") },
  returns: v.array(v.object({
    role: v.string(),
    content: v.string(),
    createdAt: v.number(),
  })),
  handler: async (ctx, args) => {
    return await agent.getMessages(ctx, {
      threadId: args.threadId,
    });
  },
});

Sending Messages and Streaming Responses

// convex/chat.ts
import { action } from "./_generated/server";
import { v } from "convex/values";
import { agent } from "./agent";
import { internal } from "./_generated/api";

export const sendMessage = action({
  args: {
    threadId: v.id("threads"),
    message: v.string(),
  },
  returns: v.null(),
  handler: async (ctx, args) => {
    // Add user message to thread
    await ctx.runMutation(internal.chat.addUserMessage, {
      threadId: args.threadId,
      content: args.message,
    });

    // Generate AI response with streaming
    const response = await agent.chat(ctx, {
      threadId: args.threadId,
      messages: [{ role: "user", content: args.message }],
      stream: true,
      onToken: async (token) => {
        // Stream tokens to client via mutation
        await ctx.runMutation(internal.chat.appendToken, {
          threadId: args.threadId,
          token,
        });
      },
    });

    // Save complete response
    await ctx.runMutation(internal.chat.saveResponse, {
      threadId: args.threadId,
      content: response.content,
    });

    return null;
  },
});

Tool Integration

Define tools that agents can use:

// convex/tools.ts
import { tool } from "@convex-dev/agent";
import { v } from "convex/values";
import { api } from "./_generated/api";

// Tool to search knowledge base
export const searchKnowledge = tool({
  name: "search_knowledge",
  description: "Search the knowledge base for relevant information",
  parameters: v.object({
    query: v.string(),
    limit: v.optional(v.number()),
  }),
  handler: async (ctx, args) => {
    const results = await ctx.runQuery(api.knowledge.search, {
      query: args.query,
      limit: args.limit ?? 5,
    });
    return results;
  },
});

// Tool to create a task
export const createTask = tool({
  name: "create_task",
  description: "Create a new task for the user",
  parameters: v.object({
    title: v.string(),
    description: v.optional(v.string()),
    dueDate: v.optional(v.string()),
  }),
  handler: async (ctx, args) => {
    const taskId = await ctx.runMutation(api.tasks.create, {
      title: args.title,
      description: args.description,
      dueDate: args.dueDate ? new Date(args.dueDate).getTime() : undefined,
    });
    return { success: true, taskId };
  },
});

// Tool to get weather
export const getWeather = tool({
  name: "get_weather",
  description: "Get current weather for a location",
  parameters: v.object({
    location: v.string(),
  }),
  handler: async (ctx, args) => {
    const response = await fetch(
      `https://api.weather.com/current?location=${encodeURIComponent(args.location)}`
    );
    return await response.json();
  },
});

Agent with Tools

// convex/assistant.ts
import { action } from "./_generated/server";
import { v } from "convex/values";
import { agent } from "./agent";
import { searchKnowledge, createTask, getWeather } from "./tools";

export const chat = action({
  args: {
    threadId: v.id("threads"),
    message: v.string(),
  },
  returns: v.string(),
  handler: async (ctx, args) => {
    const response = await agent.chat(ctx, {
      threadId: args.threadId,
      messages: [{ role: "user", content: args.message }],
      tools: [searchKnowledge, createTask, getWeather],
      systemPrompt: `You are a helpful assistant. You have access to tools to:
        - Search the knowledge base for information
        - Create tasks for the user
        - Get weather information
        Use these tools when appropriate to help the user.`,
    });

    return response.content;
  },
});

RAG (Retrieval Augmented Generation)

// convex/knowledge.ts
import { mutation, query } from "./_generated/server";
import { v } from "convex/values";
import { agent } from "./agent";

// Add document to knowledge base
export const addDocument = mutation({
  args: {
    title: v.string(),
    content: v.string(),
    metadata: v.optional(v.object({
      source: v.optional(v.string()),
      category: v.optional(v.string()),
    })),
  },
  returns: v.id("documents"),
  handler: async (ctx, args) => {
    // Generate embedding
    const embedding = await agent.embed(ctx, args.content);

    return await ctx.db.insert("documents", {
      title: args.title,
      content: args.content,
      embedding,
      metadata: args.metadata ?? {},
      createdAt: Date.now(),
    });
  },
});

// Search knowledge base
export const search = query({
  args: {
    query: v.string(),
    limit: v.optional(v.number()),
  },
  returns: v.array(v.object({
    _id: v.id("documents"),
    title: v.string(),
    content: v.string(),
    score: v.number(),
  })),
  handler: async (ctx, args) => {
    const results = await agent.search(ctx, {
      query: args.query,
      table: "documents",
      limit: args.limit ?? 5,
    });

    return results.map((r) => ({
      _id: r._id,
      title: r.title,
      content: r.content,
      score: r._score,
    }));
  },
});

Workflow Orchestration

// convex/workflows.ts
import { action, internalMutation } from "./_generated/server";
import { v } from "convex/values";
import { agent } from "./agent";
import { internal } from "./_generated/api";

// Multi-step research workflow
export const researchTopic = action({
  args: {
    topic: v.string(),
    userId: v.id("users"),
  },
  returns: v.id("research"),
  handler: async (ctx, args) => {
    // Create research record
    const researchId = await ctx.runMutation(internal.workflows.createResearch, {
      topic: args.topic,
      userId: args.userId,
      status: "searching",
    });

    // Step 1: Search for relevant documents
    const searchResults = await agent.search(ctx, {
      query: args.topic,
      table: "documents",
      limit: 10,
    });

    await ctx.runMutation(internal.workflows.updateStatus, {
      researchId,
      status: "analyzing",
    });

    // Step 2: Analyze and synthesize
    const analysis = await agent.chat(ctx, {
      messages: [{
        role: "user",
        content: `Analyze these sources about "${args.topic}" and provide a comprehensive summary:\n\n${
          searchResults.map((r) => r.content).join("\n\n---\n\n")
        }`,
      }],
      systemPrompt: "You are a research assistant. Provide thorough, well-cited analysis.",
    });

    // Step 3: Generate key insights
    await ctx.runMutation(internal.workflows.updateStatus, {
      researchId,
      status: "summarizing",
    });

    const insights = await agent.chat(ctx, {
      messages: [{
        role: "user",
        content: `Based on this analysis, list 5 key insights:\n\n${analysis.content}`,
      }],
    });

    // Save final results
    await ctx.runMutation(internal.workflows.completeResearch, {
      researchId,
      analysis: analysis.content,
      insights: insights.content,
      sources: searchResults.map((r) => r._id),
    });

    return researchId;
  },
});

Examples

Complete Chat Application Schema

// convex/schema.ts
import { defineSchema, defineTable } from "convex/server";
import { v } from "convex/values";

export default defineSchema({
  threads: defineTable({
    userId: v.id("users"),
    title: v.string(),
    lastMessageAt: v.optional(v.number()),
    metadata: v.optional(v.any()),
  }).index("by_user", ["userId"]),

  messages: defineTable({
    threadId: v.id("threads"),
    role: v.union(v.literal("user"), v.literal("assistant"), v.literal("system")),
    content: v.string(),
    toolCalls: v.optional(v.array(v.object({
      name: v.string(),
      arguments: v.any(),
      result: v.optional(v.any()),
    }))),
    createdAt: v.number(),
  }).index("by_thread", ["threadId"]),

  documents: defineTable({
    title: v.string(),
    content: v.string(),
    embedding: v.array(v.float64()),
    metadata: v.object({
      source: v.optional(v.string()),
      category: v.optional(v.string()),
    }),
    createdAt: v.number(),
  }).vectorIndex("by_embedding", {
    vectorField: "embedding",
    dimensions: 1536,
  }),
});

React Chat Component

import { useQuery, useMutation, useAction } from "convex/react";
import { api } from "../convex/_generated/api";
import { useState, useRef, useEffect } from "react";

function ChatInterface({ threadId }: { threadId: Id<"threads"> }) {
  const messages = useQuery(api.threads.getMessages, { threadId });
  const sendMessage = useAction(api.chat.sendMessage);
  const [input, setInput] = useState("");
  const [sending, setSending] = useState(false);
  const messagesEndRef = useRef<HTMLDivElement>(null);

  useEffect(() => {
    messagesEndRef.current?.scrollIntoView({ behavior: "smooth" });
  }, [messages]);

  const handleSend = async (e: React.FormEvent) => {
    e.preventDefault();
    if (!input.trim() || sending) return;

    const message = input.trim();
    setInput("");
    setSending(true);

    try {
      await sendMessage({ threadId, message });
    } finally {
      setSending(false);
    }
  };

  return (
    <div className="chat-container">
      <div className="messages">
        {messages?.map((msg, i) => (
          <div key={i} className={`message ${msg.role}`}>
            <strong>{msg.role === "user" ? "You" : "Assistant"}:</strong>
            <p>{msg.content}</p>
          </div>
        ))}
        <div ref={messagesEndRef} />
      </div>

      <form onSubmit={handleSend} className="input-form">
        <input
          value={input}
          onChange={(e) => setInput(e.target.value)}
          placeholder="Type your message..."
          disabled={sending}
        />
        <button type="submit" disabled={sending || !input.trim()}>
          {sending ? "Sending..." : "Send"}
        </button>
      </form>
    </div>
  );
}

Best Practices

  • Never run npx convex deploy unless explicitly instructed
  • Never run any git commands unless explicitly instructed
  • Store conversation history in Convex for persistence
  • Use streaming for better user experience with long responses
  • Implement proper error handling for tool failures
  • Use vector indexes for efficient RAG retrieval
  • Rate limit agent interactions to control costs
  • Log tool usage for debugging and analytics

Common Pitfalls

  1. Not persisting threads - Conversations lost on refresh
  2. Blocking on long responses - Use streaming instead
  3. Tool errors crashing agents - Add proper error handling
  4. Large context windows - Summarize old messages
  5. Missing embeddings for RAG - Generate embeddings on insert

References

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/convex-agents

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill