Back to Skills

container-registry-setup

majiayu000
Updated Today
1 views
58
9
58
View on GitHub
Documentationai

About

This Claude Skill helps developers set up and configure container registries like AWS ECR, Harbor, and Docker Hub. It provides guidance on registry selection, security, and CI/CD integration. Use it for implementing infrastructure-as-code, image scanning, and managing public or private repositories.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/container-registry-setup

Copy and paste this command in Claude Code to install this skill

Documentation

Container Registry Setup Expert

Эксперт по настройке и управлению container registries.

Типы Registry

Cloud-Managed

RegistryProviderFeatures
ECRAWSIAM integration, scanning
Artifact RegistryGCPMulti-format, regional
ACRAzureAD integration, geo-rep
Docker HubDockerPublic/private, CI/CD

Self-Hosted

RegistryBest ForFeatures
HarborEnterpriseRBAC, scanning, replication
NexusMulti-artifactMaven, npm, Docker
ArtifactoryEnterpriseUniversal, HA
DistributionSimpleOfficial Docker registry

AWS ECR Setup

Terraform Configuration

resource "aws_ecr_repository" "app" {
  name                 = "my-application"
  image_tag_mutability = "IMMUTABLE"

  image_scanning_configuration {
    scan_on_push = true
  }

  encryption_configuration {
    encryption_type = "KMS"
    kms_key         = aws_kms_key.ecr.arn
  }

  tags = {
    Environment = "production"
    Team        = "platform"
  }
}

resource "aws_ecr_lifecycle_policy" "cleanup" {
  repository = aws_ecr_repository.app.name

  policy = jsonencode({
    rules = [
      {
        rulePriority = 1
        description  = "Keep last 10 images"
        selection = {
          tagStatus     = "tagged"
          tagPrefixList = ["v"]
          countType     = "imageCountMoreThan"
          countNumber   = 10
        }
        action = {
          type = "expire"
        }
      },
      {
        rulePriority = 2
        description  = "Remove untagged after 7 days"
        selection = {
          tagStatus   = "untagged"
          countType   = "sinceImagePushed"
          countUnit   = "days"
          countNumber = 7
        }
        action = {
          type = "expire"
        }
      }
    ]
  })
}

ECR Authentication

# Login to ECR
aws ecr get-login-password --region us-east-1 | \
  docker login --username AWS --password-stdin \
  123456789.dkr.ecr.us-east-1.amazonaws.com

# Push image
docker tag myapp:latest 123456789.dkr.ecr.us-east-1.amazonaws.com/myapp:latest
docker push 123456789.dkr.ecr.us-east-1.amazonaws.com/myapp:latest

Harbor Self-Hosted

Docker Compose Setup

version: '3'
services:
  harbor-core:
    image: goharbor/harbor-core:v2.9.0
    container_name: harbor-core
    env_file:
      - ./common/config/core/env
    volumes:
      - ./common/config/core/certificates:/etc/core/certificates
      - ./common/config/core/key:/etc/core/key
    depends_on:
      - registry
      - redis
      - postgresql
    networks:
      - harbor

  registry:
    image: goharbor/registry-photon:v2.9.0
    container_name: registry
    volumes:
      - registry_data:/storage
      - ./common/config/registry:/etc/registry
    networks:
      - harbor

  postgresql:
    image: goharbor/harbor-db:v2.9.0
    container_name: harbor-db
    volumes:
      - database:/var/lib/postgresql/data
    environment:
      POSTGRES_PASSWORD: ${DB_PASSWORD}
    networks:
      - harbor

  redis:
    image: goharbor/redis-photon:v2.9.0
    container_name: harbor-redis
    volumes:
      - redis:/var/lib/redis
    networks:
      - harbor

  nginx:
    image: goharbor/nginx-photon:v2.9.0
    container_name: nginx
    ports:
      - "80:8080"
      - "443:8443"
    volumes:
      - ./common/config/nginx:/etc/nginx
    depends_on:
      - harbor-core
    networks:
      - harbor

volumes:
  registry_data:
  database:
  redis:

networks:
  harbor:
    driver: bridge

Image Security

Vulnerability Scanning

# Trivy scan
trivy image myapp:latest

# Grype scan
grype myapp:latest

# ECR scan results
aws ecr describe-image-scan-findings \
  --repository-name myapp \
  --image-id imageTag=latest

Image Signing with Cosign

# Generate key pair
cosign generate-key-pair

# Sign image
cosign sign --key cosign.key myregistry/myapp:latest

# Verify signature
cosign verify --key cosign.pub myregistry/myapp:latest

Content Trust (Docker)

# Enable content trust
export DOCKER_CONTENT_TRUST=1

# Sign and push
docker push myregistry/myapp:latest

# Verify on pull
docker pull myregistry/myapp:latest

Kubernetes Integration

Image Pull Secret

apiVersion: v1
kind: Secret
metadata:
  name: registry-credentials
  namespace: default
type: kubernetes.io/dockerconfigjson
data:
  .dockerconfigjson: |
    eyJhdXRocyI6eyJteXJlZ2lzdHJ5LmNvbSI6eyJ1c2VybmFtZSI6InVzZXIi
    LCJwYXNzd29yZCI6InBhc3MiLCJhdXRoIjoiZFhObGNqcHdZWE56In19fQ==

Deployment with Pull Secret

apiVersion: apps/v1
kind: Deployment
metadata:
  name: myapp
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp
  template:
    metadata:
      labels:
        app: myapp
    spec:
      containers:
        - name: myapp
          image: myregistry.com/myapp:v1.0.0
          imagePullPolicy: Always
      imagePullSecrets:
        - name: registry-credentials

ServiceAccount Configuration

apiVersion: v1
kind: ServiceAccount
metadata:
  name: myapp-sa
  namespace: default
imagePullSecrets:
  - name: registry-credentials

CI/CD Integration

GitHub Actions

name: Build and Push

on:
  push:
    branches: [main]

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4

      - name: Set up Docker Buildx
        uses: docker/setup-buildx-action@v3

      - name: Login to ECR
        uses: aws-actions/amazon-ecr-login@v2

      - name: Login to Docker Hub
        uses: docker/login-action@v3
        with:
          username: ${{ secrets.DOCKERHUB_USERNAME }}
          password: ${{ secrets.DOCKERHUB_TOKEN }}

      - name: Build and push
        uses: docker/build-push-action@v5
        with:
          context: .
          platforms: linux/amd64,linux/arm64
          push: true
          tags: |
            123456789.dkr.ecr.us-east-1.amazonaws.com/myapp:${{ github.sha }}
            myuser/myapp:${{ github.sha }}
          cache-from: type=gha
          cache-to: type=gha,mode=max

GitLab CI

stages:
  - build
  - push

variables:
  IMAGE_NAME: $CI_REGISTRY_IMAGE

build:
  stage: build
  image: docker:24
  services:
    - docker:24-dind
  before_script:
    - docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY
  script:
    - docker build -t $IMAGE_NAME:$CI_COMMIT_SHA .
    - docker push $IMAGE_NAME:$CI_COMMIT_SHA
  only:
    - main

Cleanup Scripts

ECR Cleanup

import boto3
from datetime import datetime, timedelta

def cleanup_untagged_images(repository: str, days_old: int = 7):
    """Remove untagged images older than specified days."""
    ecr = boto3.client('ecr')

    response = ecr.describe_images(
        repositoryName=repository,
        filter={'tagStatus': 'UNTAGGED'}
    )

    cutoff = datetime.now() - timedelta(days=days_old)

    images_to_delete = []
    for image in response['imageDetails']:
        if image['imagePushedAt'].replace(tzinfo=None) < cutoff:
            images_to_delete.append({
                'imageDigest': image['imageDigest']
            })

    if images_to_delete:
        ecr.batch_delete_image(
            repositoryName=repository,
            imageIds=images_to_delete
        )
        print(f"Deleted {len(images_to_delete)} images")

# Usage
cleanup_untagged_images('my-app', days_old=7)

Performance Optimization

Registry Caching

# Docker daemon.json
{
  "registry-mirrors": ["https://mirror.gcr.io"],
  "insecure-registries": [],
  "max-concurrent-downloads": 10,
  "max-concurrent-uploads": 5
}

Pull-Through Cache (Harbor)

# Harbor project config
replication:
  - name: docker-hub-proxy
    type: pull-through
    source: https://registry-1.docker.io
    filters:
      - name: library/*
    trigger:
      type: manual

Troubleshooting

# Test connectivity
curl -v https://myregistry.com/v2/

# Check authentication
docker login myregistry.com

# Verify TLS
openssl s_client -connect myregistry.com:443 -servername myregistry.com

# Clear credentials
docker logout myregistry.com
rm ~/.docker/config.json

# Debug pull issues
docker pull myregistry.com/myapp:latest --debug

Лучшие практики

  1. Image immutability — используйте immutable tags
  2. Vulnerability scanning — scan on push обязателен
  3. Lifecycle policies — автоматическая очистка старых images
  4. Content trust — подписывайте production images
  5. Geo-replication — для global deployments
  6. Access control — минимальные права через RBAC
  7. Monitoring — алерты на failed pushes и pulls

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/container-registry-setup

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill