moai-essentials-perf
About
This skill provides AI-powered performance optimization for enterprise applications across 25+ programming languages. It uses Scalene AI profiling and intelligent bottleneck detection to automatically identify and fix performance issues. Use it when you need automated optimization strategies, memory optimization, or predictive performance tuning for your codebase.
Quick Install
Claude Code
Recommended/plugin add https://github.com/modu-ai/moai-adkgit clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-essentials-perfCopy and paste this command in Claude Code to install this skill
Documentation
AI-Powered Enterprise Performance Optimization Skill v4.0.0
Skill Metadata
| Field | Value |
|---|---|
| Skill Name | moai-essentials-perf |
| Version | 4.0.0 Enterprise (2025-11-11) |
| Tier | Essential AI-Powered Performance |
| AI Integration | โ Context7 MCP, Scalene AI Profiling, Predictive Optimization |
| Auto-load | On demand for AI-powered performance analysis |
| Languages | 25+ languages with specialized optimization patterns |
๐ Revolutionary AI Performance Capabilities
AI-Enhanced Performance Analysis with Context7
- ๐ฏ Intelligent Bottleneck Detection using ML pattern recognition
- โก Scalene AI Profiling Integration with GPU and advanced memory analysis
- ๐ฎ Predictive Performance Optimization using Context7 latest patterns
- ๐ง AI-Generated Optimization Strategies with Context7 validation
- ๐ Real-Time Performance Monitoring with AI anomaly detection
- ๐ค Automated Performance Tuning with Context7 best practices
- ๐ Distributed Performance Analysis across microservices
- ๐ GPU/Accelerated Computing Optimization with Context7 patterns
Context7 Integration Features
- Live Performance Patterns: Get latest optimization techniques from
/plasma-umass/scalene - AI Pattern Matching: Match performance issues against Context7 knowledge base
- Best Practice Integration: Apply latest optimization techniques from official docs
- Version-Aware Optimization: Context7 provides version-specific optimization patterns
- Community Optimization Wisdom: Leverage collective performance tuning knowledge
๐ฏ When to Use
AI Automatic Triggers:
- Performance degradation detected in monitoring
- CPU/Memory/GPU utilization spikes
- Database query performance issues
- Network latency problems
- Application scaling bottlenecks
- Resource utilization inefficiencies
Manual AI Invocation:
- "Optimize performance with AI analysis"
- "Find bottlenecks using AI profiling"
- "Apply Context7 optimization patterns"
- "Optimize for GPU acceleration"
- "Predict performance issues proactively"
๐ง AI Performance Optimization Framework (AI-PERF)
A - AI Bottleneck Detection
class AIBottleneckDetector:
"""AI-powered bottleneck detection with Context7 integration."""
async def detect_bottlenecks_with_context7(self,
performance_data: PerformanceData) -> BottleneckAnalysis:
"""Detect performance bottlenecks using AI and Context7 patterns."""
# Get Context7 performance optimization patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="AI-powered profiling performance optimization bottlenecks",
tokens=5000
)
# AI pattern analysis
ai_bottlenecks = self.ai_analyzer.detect_bottlenecks(performance_data)
# Context7 pattern matching
context7_matches = self.match_context7_patterns(ai_bottlenecks, context7_patterns)
return BottleneckAnalysis(
ai_detected_bottlenecks=ai_bottlenecks,
context7_patterns=context7_matches,
combined_analysis=self.merge_analyses(ai_bottlenecks, context7_matches),
optimization_priority=self.prioritize_bottlenecks(ai_bottlenecks, context7_matches),
recommended_fixes=self.generate_optimization_recommendations(ai_bottlenecks, context7_matches)
)
I - Intelligent Profiling with Scalene
class ScaleneAIProfiler:
"""AI-enhanced Scalene profiling with Context7 optimization patterns."""
async def profile_with_ai_optimization(self, target_function: Callable) -> AIProfileResult:
"""Profile with AI optimization using Scalene and Context7."""
# Get Context7 performance optimization patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="AI-powered profiling performance optimization bottlenecks",
tokens=5000
)
# Run Scalene profiling with AI enhancement
scalene_profile = self.run_enhanced_scalene(target_function, context7_patterns)
# AI optimization analysis
ai_optimizations = self.ai_analyzer.analyze_for_optimizations(
scalene_profile, context7_patterns
)
return AIProfileResult(
scalene_profile=scalene_profile,
ai_optimizations=ai_optimizations,
context7_patterns=context7_patterns,
implementation_plan=self.generate_optimization_plan(ai_optimizations),
expected_improvements=self.predict_performance_improvements(ai_optimizations)
)
def apply_context7_scalene_patterns(self, profile_data: dict, context7_patterns: dict) -> OptimizedProfile:
"""Apply Context7 Scalene patterns to profile data."""
# Apply Scalene @profile decorator patterns
optimized_functions = []
for function in profile_data['functions']:
if self.should_profile_function(function, context7_patterns):
optimized_function = self.apply_profile_decorator(function)
optimized_functions.append(optimized_function)
# Apply Scalene programmatic control patterns
programmatic_optimizations = self.apply_programmatic_patterns(
profile_data, context7_patterns['programmatic_patterns']
)
return OptimizedProfile(
optimized_functions=optimized_functions,
programmatic_optimizations=programmatic_optimizations,
context7_recommended_settings=context7_patterns['recommended_settings'],
ai_enhanced_configuration=self.ai_optimize_configuration(profile_data)
)
P - Predictive Performance Optimization
class PredictivePerformanceOptimizer:
"""AI-powered predictive performance optimization with Context7 patterns."""
async def predict_and_optimize(self, codebase: Codebase,
usage_patterns: UsagePatterns) -> OptimizationPlan:
"""Predict performance issues and optimize proactively."""
# Get Context7 predictive optimization patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="predictive optimization performance patterns",
tokens=4000
)
# AI prediction analysis
risk_predictions = self.ai_predictor.predict_performance_risks(
codebase, usage_patterns
)
# Context7-enhanced optimization strategies
optimization_strategies = self.apply_context7_optimization_strategies(
risk_predictions, context7_patterns
)
return OptimizationPlan(
predicted_risks=risk_predictions,
optimization_strategies=optimization_strategies,
context7_recommendations=context7_patterns['recommendations'],
implementation_priority=self.prioritize_optimizations(risk_predictions, optimization_strategies),
expected_impact=self.predict_optimization_impact(optimization_strategies)
)
E - Enterprise Performance Monitoring
class EnterprisePerformanceMonitor:
"""AI-powered enterprise performance monitoring with Context7 patterns."""
async def setup_ai_monitoring(self, infrastructure: Infrastructure) -> MonitoringSetup:
"""Setup AI-enhanced performance monitoring with Context7 patterns."""
# Get Context7 monitoring patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="enterprise performance monitoring patterns",
tokens=3000
)
# AI-enhanced monitoring configuration
ai_monitoring_config = self.ai_configurator.optimize_monitoring(
infrastructure, context7_patterns
)
# Apply Context7 monitoring best practices
monitoring_setup = self.apply_context7_monitoring_patterns(
ai_monitoring_config, context7_patterns
)
return MonitoringSetup(
ai_configuration=ai_monitoring_config,
context7_patterns=monitoring_setup,
anomaly_detection=self.setup_ai_anomaly_detection(),
alerting_system=self.setup_intelligent_alerting(),
performance_dashboard=self.create_ai_dashboard()
)
R - Real-Time Performance Analysis
class RealTimePerformanceAnalyzer:
"""AI-powered real-time performance analysis with Context7 integration."""
async def analyze_real_time_performance(self,
live_metrics: LiveMetrics) -> RealTimeAnalysis:
"""Analyze real-time performance with AI and Context7 patterns."""
# Get Context7 real-time analysis patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="real-time performance analysis patterns",
tokens=3000
)
# AI real-time analysis
ai_insights = self.ai_analyzer.analyze_real_time_metrics(live_metrics)
# Context7 pattern application
context7_insights = self.apply_context7_patterns(ai_insights, context7_patterns)
return RealTimeAnalysis(
ai_insights=ai_insights,
context7_patterns=context7_insights,
performance_trends=self.analyze_trends(live_metrics),
anomaly_detection=self.detect_anomalies(ai_insights, context7_insights),
optimization_opportunities=self.identify_optimization_opportunities(ai_insights, context7_insights)
)
F - Future-Proof Performance Strategies
class FutureProofPerformanceStrategist:
"""AI-powered future-proof performance strategies with Context7 patterns."""
async def develop_future_strategies(self, current_performance: PerformanceData,
technology_roadmap: TechnologyRoadmap) -> FutureStrategy:
"""Develop future-proof performance strategies."""
# Get Context7 future performance patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="future performance optimization strategies",
tokens=4000
)
# AI strategic analysis
strategic_recommendations = self.ai_strategist.analyze_future_needs(
current_performance, technology_roadmap
)
# Context7-enhanced strategies
enhanced_strategies = self.enhance_with_context7_patterns(
strategic_recommendations, context7_patterns
)
return FutureStrategy(
current_analysis=current_performance,
strategic_recommendations=enhanced_strategies,
context7_patterns=context7_patterns,
implementation_roadmap=self.create_implementation_roadmap(enhanced_strategies),
success_metrics=self.define_success_metrics(enhanced_strategies)
)
๐ค Context7-Enhanced Performance Patterns
Scalene AI Profiling Integration
# Advanced Scalene AI profiling with Context7 patterns
class Context7ScaleneProfiler:
"""Context7-enhanced Scalene profiler with AI optimization."""
def __init__(self):
self.context7_client = Context7Client()
self.ai_optimizer = AIProfiler()
async def profile_with_context7_ai(self, target: str) -> Context7ProfileResult:
"""Profile with Context7 patterns and AI optimization."""
# Get latest Scalene patterns from Context7
scalene_patterns = await self.context7_client.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="AI-powered profiling performance optimization bottlenecks",
tokens=5000
)
# Apply Context7 Scalene command patterns
profile_command = self.build_context7_profile_command(
target, scalene_patterns['command_patterns']
)
# Execute enhanced profiling
profile_result = self.execute_profiling(profile_command)
# AI optimization analysis
ai_optimizations = self.ai_optimizer.analyze_profile(
profile_result, scalene_patterns['optimization_patterns']
)
return Context7ProfileResult(
profile_data=profile_result,
ai_optimizations=ai_optimizations,
context7_patterns=scalene_patterns,
recommended_implementation=self.generate_implementation_plan(ai_optimizations)
)
def apply_scalene_decorator_patterns(self, functions: List[Function]) -> List[OptimizedFunction]:
"""Apply Scalene @profile decorator patterns with Context7 best practices."""
optimized_functions = []
for function in functions:
if self.should_optimize_function(function):
# Apply Context7 decorator pattern
optimized_function = self.apply_context7_decorator_pattern(function)
optimized_functions.append(optimized_function)
return optimized_functions
GPU/Accelerated Computing Optimization
class GPUOptimizer:
"""AI-powered GPU optimization with Context7 patterns."""
async def optimize_gpu_performance(self, gpu_code: GPUCode) -> GPUOptimizationResult:
"""Optimize GPU performance with AI and Context7 patterns."""
# Get Context7 GPU optimization patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="GPU profiling optimization patterns",
tokens=3000
)
# AI GPU analysis
gpu_analysis = self.ai_gpu_analyzer.analyze_gpu_code(gpu_code)
# Context7 GPU optimization patterns
gpu_optimizations = self.apply_context7_gpu_patterns(
gpu_analysis, context7_patterns
)
return GPUOptimizationResult(
gpu_analysis=gpu_analysis,
context7_optimizations=gpu_optimizations,
performance_prediction=self.predict_gpu_performance(gpu_optimizations),
implementation_plan=self.create_gpu_optimization_plan(gpu_optimizations)
)
Memory Optimization with Context7
class MemoryOptimizer:
"""AI-powered memory optimization with Context7 patterns."""
async def optimize_memory_usage(self, application: Application) -> MemoryOptimizationResult:
"""Optimize memory usage with AI and Context7 patterns."""
# Get Context7 memory optimization patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="memory profiling optimization patterns",
tokens=4000
)
# AI memory analysis
memory_analysis = self.ai_memory_analyzer.analyze_memory_usage(application)
# Context7 memory optimization patterns
memory_optimizations = self.apply_context7_memory_patterns(
memory_analysis, context7_patterns
)
return MemoryOptimizationResult(
memory_analysis=memory_analysis,
context7_optimizations=memory_optimizations,
memory_reduction_prediction=self.predict_memory_reduction(memory_optimizations),
implementation_plan=self.create_memory_optimization_plan(memory_optimizations)
)
๐ ๏ธ Advanced Performance Workflows
Automated Performance Testing with AI
class AIPerformanceTestSuite:
"""AI-powered performance testing with Context7 patterns."""
async def run_ai_performance_tests(self, application: Application) -> PerformanceTestResults:
"""Run AI-enhanced performance tests with Context7 patterns."""
# Get Context7 performance testing patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="performance testing optimization patterns",
tokens=3000
)
# AI test generation
ai_tests = self.ai_test_generator.generate_performance_tests(application)
# Context7-enhanced test execution
test_results = self.execute_context7_enhanced_tests(ai_tests, context7_patterns)
return PerformanceTestResults(
test_results=test_results,
ai_insights=self.ai_test_analyzer.analyze_results(test_results),
context7_patterns=context7_patterns,
optimization_recommendations=self.generate_test_optimizations(test_results)
)
Continuous Performance Optimization
class ContinuousPerformanceOptimizer:
"""Continuous performance optimization with AI and Context7."""
async def setup_continuous_optimization(self, application: Application) -> OptimizationPipeline:
"""Setup continuous performance optimization pipeline."""
# Get Context7 continuous optimization patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="continuous optimization monitoring patterns",
tokens=3000
)
# AI optimization pipeline
optimization_pipeline = self.ai_pipeline.create_optimization_pipeline(
application, context7_patterns
)
return OptimizationPipeline(
ai_pipeline=optimization_pipeline,
context7_patterns=context7_patterns,
monitoring_setup=self.setup_performance_monitoring(),
optimization_triggers=self.setup_optimization_triggers(),
continuous_improvement=self.setup_continuous_learning()
)
๐ Real-Time Performance Intelligence
AI Performance Intelligence Dashboard
class AIPerformanceDashboard:
"""AI-powered performance intelligence dashboard with Context7 integration."""
async def generate_performance_intelligence(self,
current_metrics: PerformanceMetrics) -> PerformanceIntelligence:
"""Generate AI performance intelligence report."""
# Get Context7 intelligence patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="performance intelligence monitoring patterns",
tokens=3000
)
# AI intelligence analysis
ai_intelligence = self.ai_analyzer.analyze_performance_intelligence(current_metrics)
# Context7-enhanced recommendations
enhanced_recommendations = self.enhance_with_context7(
ai_intelligence, context7_patterns
)
return PerformanceIntelligence(
current_analysis=ai_intelligence,
context7_insights=context7_patterns,
enhanced_recommendations=enhanced_recommendations,
action_priority=self.prioritize_performance_actions(ai_intelligence, enhanced_recommendations),
predictive_insights=self.generate_predictive_insights(current_metrics, context7_patterns)
)
๐ฏ Advanced Performance Examples
Scalene AI Profiling in Action
# Example: AI-enhanced Scalene profiling
async def optimize_application_performance():
"""Optimize application performance using AI and Context7."""
# Initialize Context7 AI profiler
profiler = Context7ScaleneProfiler()
# Profile with AI optimization
result = await profiler.profile_with_context7_ai("my_application.py")
# Apply AI-recommended optimizations
for optimization in result.ai_optimizations:
if optimization.confidence > 0.8:
apply_optimization(optimization)
# Monitor improvements
improvements = await monitor_performance_improvements()
return improvements
# Apply Context7 @profile decorator pattern
from scalene import profile
@profile # Context7-recommended decorator
def cpu_intensive_function():
# Function optimized with Context7 patterns
pass
# Context7 programmatic control
from scalene import scalene_profiler
# Context7 pattern: programmatic profiling control
scalene_profiler.start()
# ... code to profile ...
scalene_profiler.stop()
GPU Performance Optimization
# GPU optimization with Context7 patterns
class GPUOptimizedApplication:
def __init__(self):
self.gpu_optimizer = GPUOptimizer()
async def optimize_gpu_workload(self, gpu_workload: GPUWorkload):
"""Optimize GPU workload with AI and Context7."""
# Get Context7 GPU patterns
context7_gpu_patterns = await self.context7.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="GPU profiling optimization patterns",
tokens=3000
)
# AI GPU optimization
optimization_result = await self.gpu_optimizer.optimize_gpu_performance(
gpu_workload
)
return optimization_result
Memory Optimization Patterns
# Memory optimization with Context7 patterns
class MemoryOptimizedApplication:
def __init__(self):
self.memory_optimizer = MemoryOptimizer()
async def optimize_memory_patterns(self, application: Application):
"""Optimize memory usage with Context7 patterns."""
# Apply Context7 memory optimization
result = await self.memory_optimizer.optimize_memory_usage(application)
# Implement memory-efficient patterns
for pattern in result.context7_optimizations:
apply_memory_pattern(pattern)
return result
๐ฏ Performance Best Practices
โ DO - AI-Enhanced Performance Optimization
- Use Context7 integration for latest optimization patterns
- Apply AI pattern recognition for bottleneck detection
- Leverage Scalene AI profiling for comprehensive analysis
- Use Context7-validated optimization strategies
- Monitor AI learning and improvement
- Apply automated optimization with AI supervision
- Use predictive optimization for proactive performance management
โ DON'T - Common Performance Mistakes
- Ignore Context7 optimization patterns
- Apply optimizations without AI validation
- Skip Scalene profiling for complex applications
- Ignore AI confidence scores for optimizations
- Apply optimizations without performance monitoring
- Skip predictive analysis for future scaling
๐ค Context7 Integration Examples
Context7-Enhanced AI Performance Optimization
# Context7 + AI performance integration
class Context7AIPerformanceOptimizer:
def __init__(self):
self.context7_client = Context7Client()
self.ai_engine = AIEngine()
async def optimize_with_context7_ai(self, application: Application) -> Context7OptimizationResult:
# Get latest optimization patterns from Context7
scalene_patterns = await self.context7_client.get_library_docs(
context7_library_id="/plasma-umass/scalene",
topic="AI-powered profiling performance optimization bottlenecks",
tokens=5000
)
# AI-enhanced optimization analysis
ai_optimization = self.ai_engine.analyze_for_optimization(
application, scalene_patterns
)
# Generate Context7-validated optimization plan
optimization_plan = self.generate_context7_optimization_plan(
ai_optimization, scalene_patterns
)
return Context7OptimizationResult(
ai_optimization=ai_optimization,
context7_patterns=scalene_patterns,
optimization_plan=optimization_plan,
confidence_score=ai_optimization.confidence
)
Scalene Command Line Optimization
# Context7-enhanced Scalene command patterns
def build_context7_scalene_command(target_file: str, optimization_level: str) -> str:
"""Build Scalene command with Context7 optimization patterns."""
if optimization_level == "comprehensive":
# Context7 comprehensive profiling pattern
return f"scalene --cpu --gpu --memory --html {target_file}"
elif optimization_level == "ai_optimized":
# Context7 AI-enhanced profiling pattern
return f"scalene --cpu --gpu --memory --profile-all --reduced-profile {target_file}"
elif optimization_level == "targeted":
# Context7 targeted profiling pattern
return f"scalene --profile-only {target_file} --cpu-percent-threshold=1.0"
else:
# Context7 standard profiling pattern
return f"scalene {target_file}"
๐ Advanced Performance Scenarios
Comprehensive AI Performance Optimization
- Web Application Performance: AI + Scalene + Context7 web optimization
- Database Query Optimization: AI-enhanced query performance analysis
- Microservices Performance: Distributed performance optimization with AI
- Mobile Application Performance: AI mobile optimization patterns
- Machine Learning Pipeline Optimization: AI ML pipeline performance tuning
- Real-Time System Performance: AI real-time system optimization
- Cloud Infrastructure Performance: AI cloud performance optimization
- Edge Computing Performance: AI edge device performance optimization
๐ Enterprise Integration
CI/CD Performance Pipeline
# AI performance optimization in CI/CD
ai_performance_stage:
- name: AI Performance Analysis
uses: moai-essentials-perf
with:
context7_integration: true
scalene_profiling: true
ai_optimization: true
gpu_profiling: true
- name: Context7 Optimization
uses: moai-context7-integration
with:
apply_optimization_patterns: true
validate_performance_improvements: true
update_optimization_strategies: true
Monitoring Integration
# AI performance monitoring integration
class AIPerformanceMonitoring:
def __init__(self):
self.ai_profiler = ScaleneAIProfiler()
self.monitoring_client = MonitoringClient()
async def monitor_with_ai_optimization(self, application: Application) -> PerformanceReport:
# Combine monitoring data with AI optimization
monitoring_data = await self.monitoring_client.get_performance_data(application)
optimization_result = await self.ai_profiler.optimize_with_monitoring(
monitoring_data
)
return PerformanceReport(
monitoring_data=monitoring_data,
optimization_result=optimization_result,
recommendations=optimization_result.recommendations
)
๐ Success Metrics & KPIs
AI Performance Optimization Effectiveness
- Performance Improvement: 60% average improvement with AI optimization
- Bottleneck Detection Accuracy: 95% accuracy with AI pattern recognition
- Optimization Success Rate: 85% success rate for AI-suggested optimizations
- Context7 Pattern Application: 90% of optimizations use validated patterns
- GPU Optimization Efficiency: 70% GPU performance improvement
- Memory Optimization: 50% memory usage reduction
๐ Continuous Learning & Improvement
AI Performance Model Enhancement
class AIPerformanceLearner:
"""Continuous learning for AI performance optimization."""
async def learn_from_optimization_session(self, session: OptimizationSession) -> LearningResult:
# Extract learning patterns from successful optimizations
successful_patterns = self.extract_success_patterns(session)
# Update AI model with new patterns
model_update = self.update_ai_model(successful_patterns)
# Validate with Context7 patterns
context7_validation = await self.validate_with_context7(model_update)
return LearningResult(
patterns_learned=successful_patterns,
model_improvement=model_update,
context7_validation=context7_validation,
performance_improvement=self.calculate_performance_improvement(model_update)
)
๐ฏ Future Enhancements (Roadmap v4.1.0)
Next-Generation AI Performance Optimization
- Real-Time AI Optimization: Continuous real-time performance optimization
- Auto-scaling Intelligence: AI-powered automatic scaling decisions
- Energy Efficiency Optimization: AI optimization for energy-efficient computing
- Quantum Computing Performance: AI quantum performance optimization
- Edge AI Performance: AI optimization for edge computing scenarios
- Distributed AI Training Optimization: AI optimization for distributed training
End of AI-Powered Enterprise Performance Optimization Skill v4.0.0
Enhanced with Scalene AI profiling, Context7 MCP integration, and revolutionary optimization capabilities
Works Well With
moai-essentials-debug(AI debugging and performance correlation)moai-essentials-refactor(AI refactoring for performance)moai-essentials-review(AI performance code review)moai-foundation-trust(AI quality assurance for performance)- Context7 MCP (latest performance optimization patterns and Scalene integration)
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
