solidity-security
About
This skill provides smart contract security best practices for preventing common vulnerabilities in Solidity. Use it when writing, auditing, or securing smart contracts to address risks like reentrancy, overflow, and access control issues. It helps developers implement secure patterns and prepare contracts for professional audits.
Documentation
Solidity Security
Master smart contract security best practices, vulnerability prevention, and secure Solidity development patterns.
When to Use This Skill
- Writing secure smart contracts
- Auditing existing contracts for vulnerabilities
- Implementing secure DeFi protocols
- Preventing reentrancy, overflow, and access control issues
- Optimizing gas usage while maintaining security
- Preparing contracts for professional audits
- Understanding common attack vectors
Critical Vulnerabilities
1. Reentrancy
Attacker calls back into your contract before state is updated.
Vulnerable Code:
// VULNERABLE TO REENTRANCY
contract VulnerableBank {
mapping(address => uint256) public balances;
function withdraw() public {
uint256 amount = balances[msg.sender];
// DANGER: External call before state update
(bool success, ) = msg.sender.call{value: amount}("");
require(success);
balances[msg.sender] = 0; // Too late!
}
}
Secure Pattern (Checks-Effects-Interactions):
contract SecureBank {
mapping(address => uint256) public balances;
function withdraw() public {
uint256 amount = balances[msg.sender];
require(amount > 0, "Insufficient balance");
// EFFECTS: Update state BEFORE external call
balances[msg.sender] = 0;
// INTERACTIONS: External call last
(bool success, ) = msg.sender.call{value: amount}("");
require(success, "Transfer failed");
}
}
Alternative: ReentrancyGuard
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
contract SecureBank is ReentrancyGuard {
mapping(address => uint256) public balances;
function withdraw() public nonReentrant {
uint256 amount = balances[msg.sender];
require(amount > 0, "Insufficient balance");
balances[msg.sender] = 0;
(bool success, ) = msg.sender.call{value: amount}("");
require(success, "Transfer failed");
}
}
2. Integer Overflow/Underflow
Vulnerable Code (Solidity < 0.8.0):
// VULNERABLE
contract VulnerableToken {
mapping(address => uint256) public balances;
function transfer(address to, uint256 amount) public {
// No overflow check - can wrap around
balances[msg.sender] -= amount; // Can underflow!
balances[to] += amount; // Can overflow!
}
}
Secure Pattern (Solidity >= 0.8.0):
// Solidity 0.8+ has built-in overflow/underflow checks
contract SecureToken {
mapping(address => uint256) public balances;
function transfer(address to, uint256 amount) public {
// Automatically reverts on overflow/underflow
balances[msg.sender] -= amount;
balances[to] += amount;
}
}
For Solidity < 0.8.0, use SafeMath:
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
contract SecureToken {
using SafeMath for uint256;
mapping(address => uint256) public balances;
function transfer(address to, uint256 amount) public {
balances[msg.sender] = balances[msg.sender].sub(amount);
balances[to] = balances[to].add(amount);
}
}
3. Access Control
Vulnerable Code:
// VULNERABLE: Anyone can call critical functions
contract VulnerableContract {
address public owner;
function withdraw(uint256 amount) public {
// No access control!
payable(msg.sender).transfer(amount);
}
}
Secure Pattern:
import "@openzeppelin/contracts/access/Ownable.sol";
contract SecureContract is Ownable {
function withdraw(uint256 amount) public onlyOwner {
payable(owner()).transfer(amount);
}
}
// Or implement custom role-based access
contract RoleBasedContract {
mapping(address => bool) public admins;
modifier onlyAdmin() {
require(admins[msg.sender], "Not an admin");
_;
}
function criticalFunction() public onlyAdmin {
// Protected function
}
}
4. Front-Running
Vulnerable:
// VULNERABLE TO FRONT-RUNNING
contract VulnerableDEX {
function swap(uint256 amount, uint256 minOutput) public {
// Attacker sees this in mempool and front-runs
uint256 output = calculateOutput(amount);
require(output >= minOutput, "Slippage too high");
// Perform swap
}
}
Mitigation:
contract SecureDEX {
mapping(bytes32 => bool) public usedCommitments;
// Step 1: Commit to trade
function commitTrade(bytes32 commitment) public {
usedCommitments[commitment] = true;
}
// Step 2: Reveal trade (next block)
function revealTrade(
uint256 amount,
uint256 minOutput,
bytes32 secret
) public {
bytes32 commitment = keccak256(abi.encodePacked(
msg.sender, amount, minOutput, secret
));
require(usedCommitments[commitment], "Invalid commitment");
// Perform swap
}
}
Security Best Practices
Checks-Effects-Interactions Pattern
contract SecurePattern {
mapping(address => uint256) public balances;
function withdraw(uint256 amount) public {
// 1. CHECKS: Validate conditions
require(amount <= balances[msg.sender], "Insufficient balance");
require(amount > 0, "Amount must be positive");
// 2. EFFECTS: Update state
balances[msg.sender] -= amount;
// 3. INTERACTIONS: External calls last
(bool success, ) = msg.sender.call{value: amount}("");
require(success, "Transfer failed");
}
}
Pull Over Push Pattern
// Prefer this (pull)
contract SecurePayment {
mapping(address => uint256) public pendingWithdrawals;
function recordPayment(address recipient, uint256 amount) internal {
pendingWithdrawals[recipient] += amount;
}
function withdraw() public {
uint256 amount = pendingWithdrawals[msg.sender];
require(amount > 0, "Nothing to withdraw");
pendingWithdrawals[msg.sender] = 0;
payable(msg.sender).transfer(amount);
}
}
// Over this (push)
contract RiskyPayment {
function distributePayments(address[] memory recipients, uint256[] memory amounts) public {
for (uint i = 0; i < recipients.length; i++) {
// If any transfer fails, entire batch fails
payable(recipients[i]).transfer(amounts[i]);
}
}
}
Input Validation
contract SecureContract {
function transfer(address to, uint256 amount) public {
// Validate inputs
require(to != address(0), "Invalid recipient");
require(to != address(this), "Cannot send to contract");
require(amount > 0, "Amount must be positive");
require(amount <= balances[msg.sender], "Insufficient balance");
// Proceed with transfer
balances[msg.sender] -= amount;
balances[to] += amount;
}
}
Emergency Stop (Circuit Breaker)
import "@openzeppelin/contracts/security/Pausable.sol";
contract EmergencyStop is Pausable, Ownable {
function criticalFunction() public whenNotPaused {
// Function logic
}
function emergencyStop() public onlyOwner {
_pause();
}
function resume() public onlyOwner {
_unpause();
}
}
Gas Optimization
Use uint256 Instead of Smaller Types
// More gas efficient
contract GasEfficient {
uint256 public value; // Optimal
function set(uint256 _value) public {
value = _value;
}
}
// Less efficient
contract GasInefficient {
uint8 public value; // Still uses 256-bit slot
function set(uint8 _value) public {
value = _value; // Extra gas for type conversion
}
}
Pack Storage Variables
// Gas efficient (3 variables in 1 slot)
contract PackedStorage {
uint128 public a; // Slot 0
uint64 public b; // Slot 0
uint64 public c; // Slot 0
uint256 public d; // Slot 1
}
// Gas inefficient (each variable in separate slot)
contract UnpackedStorage {
uint256 public a; // Slot 0
uint256 public b; // Slot 1
uint256 public c; // Slot 2
uint256 public d; // Slot 3
}
Use calldata Instead of memory for Function Arguments
contract GasOptimized {
// More gas efficient
function processData(uint256[] calldata data) public pure returns (uint256) {
return data[0];
}
// Less efficient
function processDataMemory(uint256[] memory data) public pure returns (uint256) {
return data[0];
}
}
Use Events for Data Storage (When Appropriate)
contract EventStorage {
// Emitting events is cheaper than storage
event DataStored(address indexed user, uint256 indexed id, bytes data);
function storeData(uint256 id, bytes calldata data) public {
emit DataStored(msg.sender, id, data);
// Don't store in contract storage unless needed
}
}
Common Vulnerabilities Checklist
// Security Checklist Contract
contract SecurityChecklist {
/**
* [ ] Reentrancy protection (ReentrancyGuard or CEI pattern)
* [ ] Integer overflow/underflow (Solidity 0.8+ or SafeMath)
* [ ] Access control (Ownable, roles, modifiers)
* [ ] Input validation (require statements)
* [ ] Front-running mitigation (commit-reveal if applicable)
* [ ] Gas optimization (packed storage, calldata)
* [ ] Emergency stop mechanism (Pausable)
* [ ] Pull over push pattern for payments
* [ ] No delegatecall to untrusted contracts
* [ ] No tx.origin for authentication (use msg.sender)
* [ ] Proper event emission
* [ ] External calls at end of function
* [ ] Check return values of external calls
* [ ] No hardcoded addresses
* [ ] Upgrade mechanism (if proxy pattern)
*/
}
Testing for Security
// Hardhat test example
const { expect } = require("chai");
const { ethers } = require("hardhat");
describe("Security Tests", function () {
it("Should prevent reentrancy attack", async function () {
const [attacker] = await ethers.getSigners();
const VictimBank = await ethers.getContractFactory("SecureBank");
const bank = await VictimBank.deploy();
const Attacker = await ethers.getContractFactory("ReentrancyAttacker");
const attackerContract = await Attacker.deploy(bank.address);
// Deposit funds
await bank.deposit({value: ethers.utils.parseEther("10")});
// Attempt reentrancy attack
await expect(
attackerContract.attack({value: ethers.utils.parseEther("1")})
).to.be.revertedWith("ReentrancyGuard: reentrant call");
});
it("Should prevent integer overflow", async function () {
const Token = await ethers.getContractFactory("SecureToken");
const token = await Token.deploy();
// Attempt overflow
await expect(
token.transfer(attacker.address, ethers.constants.MaxUint256)
).to.be.reverted;
});
it("Should enforce access control", async function () {
const [owner, attacker] = await ethers.getSigners();
const Contract = await ethers.getContractFactory("SecureContract");
const contract = await Contract.deploy();
// Attempt unauthorized withdrawal
await expect(
contract.connect(attacker).withdraw(100)
).to.be.revertedWith("Ownable: caller is not the owner");
});
});
Audit Preparation
contract WellDocumentedContract {
/**
* @title Well Documented Contract
* @dev Example of proper documentation for audits
* @notice This contract handles user deposits and withdrawals
*/
/// @notice Mapping of user balances
mapping(address => uint256) public balances;
/**
* @dev Deposits ETH into the contract
* @notice Anyone can deposit funds
*/
function deposit() public payable {
require(msg.value > 0, "Must send ETH");
balances[msg.sender] += msg.value;
}
/**
* @dev Withdraws user's balance
* @notice Follows CEI pattern to prevent reentrancy
* @param amount Amount to withdraw in wei
*/
function withdraw(uint256 amount) public {
// CHECKS
require(amount <= balances[msg.sender], "Insufficient balance");
// EFFECTS
balances[msg.sender] -= amount;
// INTERACTIONS
(bool success, ) = msg.sender.call{value: amount}("");
require(success, "Transfer failed");
}
}
Resources
- references/reentrancy.md: Comprehensive reentrancy prevention
- references/access-control.md: Role-based access patterns
- references/overflow-underflow.md: SafeMath and integer safety
- references/gas-optimization.md: Gas saving techniques
- references/vulnerability-patterns.md: Common vulnerability catalog
- assets/solidity-contracts-templates.sol: Secure contract templates
- assets/security-checklist.md: Pre-audit checklist
- scripts/analyze-contract.sh: Static analysis tools
Tools for Security Analysis
- Slither: Static analysis tool
- Mythril: Security analysis tool
- Echidna: Fuzzing tool
- Manticore: Symbolic execution
- Securify: Automated security scanner
Common Pitfalls
- Using
tx.originfor Authentication: Usemsg.senderinstead - Unchecked External Calls: Always check return values
- Delegatecall to Untrusted Contracts: Can hijack your contract
- Floating Pragma: Pin to specific Solidity version
- Missing Events: Emit events for state changes
- Excessive Gas in Loops: Can hit block gas limit
- No Upgrade Path: Consider proxy patterns if upgrades needed
Quick Install
/plugin add https://github.com/lifangda/claude-plugins/tree/main/solidity-securityCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
