← Back to Skills

moai-baas-railway-ext

modu-ai
Updated Today
18 views
424
78
424
View on GitHub
Otheraiautomation

About

This Claude Skill provides enterprise-grade Railway deployment with AI-powered container orchestration and intelligent CI/CD automation. It integrates Context7 for enhanced development context and handles full-stack application deployment with auto-scaling and database provisioning. Use this skill when you need to deploy and manage scalable modern applications on Railway with advanced AI-assisted orchestration.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/modu-ai/moai-adk
Git CloneAlternative
git clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-baas-railway-ext

Copy and paste this command in Claude Code to install this skill

Documentation

Enterprise Railway Full-Stack Platform Expert v4.0.0

Skill Metadata

FieldValue
Skill Namemoai-baas-railway-ext
Version4.0.0 (2025-11-13)
TierEnterprise Deployment Platform Expert
AI-Poweredβœ… Context7 Integration, Intelligent Architecture
Auto-loadOn demand when Railway keywords detected

What It Does

Enterprise Railway Full-Stack Platform expert with AI-powered container orchestration, Context7 integration, and intelligent deployment automation for scalable modern applications.

Revolutionary v4.0.0 capabilities:

  • πŸ€– AI-Powered Railway Architecture using Context7 MCP for latest deployment patterns
  • πŸ“Š Intelligent Container Orchestration with automated scaling and optimization
  • πŸš€ Real-time Performance Analytics with AI-driven deployment insights
  • πŸ”— Enterprise CI/CD Integration with zero-configuration pipeline automation
  • πŸ“ˆ Predictive Cost Analysis with usage forecasting and resource optimization

When to Use

Automatic triggers:

  • Railway deployment architecture and container orchestration discussions
  • Full-stack application development and database integration
  • CI/CD pipeline setup and automated deployment strategies
  • Multi-region deployment and scaling optimization

Manual invocation:

  • Designing enterprise Railway architectures with optimal container configuration
  • Implementing automated CI/CD pipelines with GitHub integration
  • Planning full-stack application migrations to Railway
  • Optimizing costs and auto-scaling configuration

Quick Reference (Level 1)

Railway Full-Stack Platform (November 2025)

Core Features Overview

  • Container Deployment: Docker container deployment from GitHub
  • Database Provisioning: PostgreSQL, MongoDB, Redis with automatic setup
  • Multi-Region Deployment: 4+ global regions for optimal latency
  • Git-Based CI/CD: Automated deployments from Git commits
  • Background Jobs: Scheduled tasks and job processing
  • One-Click Rollback: Instant deployment history and rollback

Supported Services

  • Applications: Node.js, Python, Ruby, Go, Rust, Java, PHP
  • Databases: PostgreSQL, MongoDB, Redis, MySQL
  • Static Sites: Next.js, React, Vue, Angular, Hugo
  • Background Workers: Bull queue, Celery, Sidekiq integration
  • File Storage: Integrated with cloud storage providers

Key Benefits

  • Zero Infrastructure Management: No server configuration required
  • Developer-Friendly: Focus on code, not deployment complexity
  • Auto-Scaling: Automatic scaling based on traffic and load
  • Cost Controls: Built-in spending limits and monitoring

Performance Characteristics

  • Cold Start: < 2 seconds for container spin-up
  • Scaling: Instant horizontal and vertical scaling
  • Database Performance: Optimized configurations for each database type
  • Global Latency: < 50ms in major regions

Core Implementation (Level 2)

Railway Architecture Intelligence

# AI-powered Railway architecture optimization with Context7
class RailwayArchitectOptimizer:
    def __init__(self):
        self.context7_client = Context7Client()
        self.container_analyzer = ContainerAnalyzer()
        self.scaling_optimizer = ScalingOptimizer()
    
    async def design_optimal_railway_architecture(self, 
                                                requirements: ApplicationRequirements) -> RailwayArchitecture:
        """Design optimal Railway architecture using AI analysis."""
        
        # Get latest Railway and containerization documentation via Context7
        railway_docs = await self.context7_client.get_library_docs(
            context7_library_id='/railway/docs',
            topic="container deployment ci-cd scaling optimization 2025",
            tokens=3000
        )
        
        containerization_docs = await self.context7_client.get_library_docs(
            context7_library_id='/docker/docs',
            topic="optimization best practices orchestration 2025",
            tokens=2000
        )
        
        # Optimize container configuration
        container_optimization = self.container_analyzer.optimize_configuration(
            requirements.application_stack,
            containerization_docs
        )
        
        # Design scaling strategy
        scaling_strategy = self.scaling_optimizer.design_scaling_strategy(
            requirements.traffic_patterns,
            requirements.performance_requirements,
            railway_docs
        )
        
        return RailwayArchitecture(
            application_services=self._design_application_services(requirements),
            database_services=self._design_database_services(requirements),
            container_configuration=container_optimization,
            scaling_strategy=scaling_strategy,
            deployment_pipeline=self._design_cicd_pipeline(requirements),
            monitoring_setup=self._setup_monitoring(),
            cost_analysis=self._analyze_pricing_model(requirements)
        )

Multi-Service Deployment Configuration

# Railway multi-service application configuration
version: "1.0"
services:
  frontend:
    build:
      dockerfile: Dockerfile.frontend
      context: .
    environment:
      - NEXT_PUBLIC_API_URL=${API_URL}
      - NODE_ENV=production
    deploy:
      replicas: 2
      memory: 512Mi
      cpu: 0.5
    healthcheck:
      test: ["CMD", "curl", "-f", "http://localhost:3000/health"]
      interval: 30s
      timeout: 10s
      retries: 3

  backend:
    build:
      dockerfile: Dockerfile.backend
      context: .
    environment:
      - DATABASE_URL=${DATABASE_URL}
      - REDIS_URL=${REDIS_URL}
      - JWT_SECRET=${JWT_SECRET}
    deploy:
      replicas: 3
      memory: 1Gi
      cpu: 1.0
    healthcheck:
      test: ["CMD", "curl", "-f", "http://localhost:8000/api/health"]
      interval: 30s
      timeout: 10s
      retries: 3

  worker:
    build:
      dockerfile: Dockerfile.worker
      context: .
    environment:
      - DATABASE_URL=${DATABASE_URL}
      - REDIS_URL=${REDIS_URL}
    deploy:
      replicas: 1
      memory: 512Mi
      cpu: 0.5

  postgres:
    image: "postgres:16-alpine"
    environment:
      - POSTGRES_USER=${POSTGRES_USER}
      - POSTGRES_PASSWORD=${POSTGRES_PASSWORD}
      - POSTGRES_DB=${POSTGRES_DB}
    volume_mounts:
      - mountPath: /var/lib/postgresql/data
        name: postgres-data
    deploy:
      memory: 2Gi
      cpu: 1.0

  redis:
    image: "redis:7-alpine"
    deploy:
      memory: 512Mi
      cpu: 0.5

CI/CD Pipeline Integration

# GitHub Actions workflow for Railway deployment
name: Deploy to Railway

on:
  push:
    branches: [main, develop]
  pull_request:
    branches: [main]

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      
      - name: Setup Node.js
        uses: actions/setup-node@v4
        with:
          node-version: '20'
          cache: 'npm'
      
      - name: Install dependencies
        run: npm ci
      
      - name: Run tests
        run: npm test
      
      - name: Run E2E tests
        run: npm run test:e2e

  deploy:
    needs: test
    runs-on: ubuntu-latest
    if: github.ref == 'refs/heads/main'
    
    steps:
      - uses: actions/checkout@v4
      
      - name: Install Railway CLI
        run: npm install -g @railway/cli
      
      - name: Deploy to Railway
        env:
          RAILWAY_TOKEN: ${{ secrets.RAILWAY_TOKEN }}
        run: |
          railway login --token $RAILWAY_TOKEN
          railway up --service frontend,backend,worker

Advanced Implementation (Level 3)

Advanced Scaling Strategies

class RailwayScalingManager:
    def __init__(self):
        self.railway_client = RailwayClient()
        self.metrics_analyzer = MetricsAnalyzer()
        self.cost_optimizer = CostOptimizer()
    
    async def implement_intelligent_scaling(self, 
                                          project_id: str,
                                          scaling_config: ScalingConfiguration) -> ScalingImplementation:
        """Implement intelligent auto-scaling for Railway services."""
        
        # Analyze current usage patterns
        usage_analysis = await self.metrics_analyzer.analyze_usage_patterns(
            project_id, timeframe="7d"
        )
        
        # Configure predictive scaling
        predictive_config = self._configure_predictive_scaling(
            usage_analysis,
            scaling_config
        )
        
        # Set up cost optimization
        cost_optimization = self.cost_optimizer.optimize_scaling_costs(
            predictive_config,
            scaling_config.budget_constraints
        )
        
        return ScalingImplementation(
            scaling_rules=self._create_scaling_rules(predictive_config),
            monitoring_setup=self._setup_scaling_monitoring(),
            cost_controls=cost_optimization,
            performance_alerts=self._configure_performance_alerts()
        )

Database Optimization Patterns

// Railway PostgreSQL optimization with connection pooling
import { Pool } from 'pg';

// Production-ready database configuration
const productionPool = new Pool({
  connectionString: process.env.DATABASE_URL,
  ssl: { rejectUnauthorized: false },
  
  // Optimized for Railway's containerized environment
  max: 20, // Maximum connections in pool
  min: 5,  // Minimum connections to maintain
  idleTimeoutMillis: 30000, // Close idle connections after 30s
  connectionTimeoutMillis: 2000, // Give up connecting after 2s
  statement_timeout: 10000, // Kill slow queries after 10s
  
  // Connection retry logic
  retry: 3,
  retryDelay: 1000,
});

// Application database service
export class DatabaseService {
  private pool = productionPool;
  
  async query<T>(text: string, params?: any[]): Promise<T[]> {
    const start = Date.now();
    const client = await this.pool.connect();
    
    try {
      const result = await client.query(text, params);
      const duration = Date.now() - start;
      
      // Log slow queries for optimization
      if (duration > 1000) {
        console.warn('Slow query detected:', {
          query: text,
          duration,
          rowCount: result.rowCount
        });
      }
      
      return result.rows;
    } finally {
      client.release();
    }
  }
  
  async transaction<T>(callback: (client: any) => Promise<T>): Promise<T> {
    const client = await this.pool.connect();
    
    try {
      await client.query('BEGIN');
      const result = await callback(client);
      await client.query('COMMIT');
      return result;
    } catch (error) {
      await client.query('ROLLBACK');
      throw error;
    } finally {
      client.release();
    }
  }
}

// Health check endpoint
app.get('/api/health', async (req, res) => {
  try {
    await db.query('SELECT 1');
    res.status(200).json({ 
      status: 'healthy',
      timestamp: new Date().toISOString(),
      database: 'connected'
    });
  } catch (error) {
    res.status(503).json({ 
      status: 'unhealthy',
      timestamp: new Date().toISOString(),
      database: 'disconnected'
    });
  }
});

Environment Management

class RailwayEnvironmentManager:
    def __init__(self):
        self.railway_client = RailwayClient()
        self.config_manager = ConfigurationManager()
    
    def setup_production_environment(self, project_id: str, config: EnvironmentConfig) -> EnvironmentSetup:
        """Configure production environment with best practices."""
        
        # Set up production variables
        production_vars = {
            # Application configuration
            'NODE_ENV': 'production',
            'LOG_LEVEL': 'info',
            
            # Database configuration
            'DATABASE_URL': config.database_url,
            'DATABASE_POOL_SIZE': '20',
            'DATABASE_TIMEOUT': '10000',
            
            # Security configuration
            'JWT_SECRET': config.jwt_secret,
            'ENCRYPTION_KEY': config.encryption_key,
            'CORS_ORIGIN': config.frontend_url,
            
            # External services
            'REDIS_URL': config.redis_url,
            'EMAIL_SERVICE_API_KEY': config.email_api_key,
            
            # Monitoring and observability
            'SENTRY_DSN': config.sentry_dsn,
            'LOGTAIL_SOURCE_TOKEN': config.logtail_token
        }
        
        # Configure environment variables
        env_setup = self.railway_client.set_environment_variables(
            project_id, production_vars
        )
        
        return EnvironmentSetup(
            variables=production_vars,
            security_config=self._configure_security(),
            monitoring_config=self._configure_monitoring(),
            backup_config=self._configure_backups()
        )

Reference & Integration (Level 4)

API Reference

Core Railway Operations

  • deploy_service(project_id, service_config) - Deploy service
  • create_database(project_id, db_type) - Provision database
  • scale_service(service_id, replicas, resources) - Scale service
  • rollback_deployment(service_id, deployment_id) - Rollback deployment
  • set_environment_variables(project_id, variables) - Set environment variables

Context7 Integration

  • get_latest_railway_documentation() - Official Railway docs via Context7
  • analyze_container_optimization() - Container best practices via Context7
  • optimize_deployment_strategy() - Deployment patterns via Context7

Best Practices (November 2025)

DO

  • Use separate environments for development, staging, and production
  • Implement comprehensive health checks for all services
  • Configure proper logging and monitoring for observability
  • Use connection pooling for database connections
  • Set up automated testing before deployments
  • Monitor costs and implement spending limits
  • Use volume mounts for persistent data storage
  • Implement proper error handling and retry logic

DON'T

  • Hardcode environment variables in application code
  • Skip health checks and monitoring setup
  • Use production database for development testing
  • Ignore scaling limits and cost controls
  • Deploy without proper testing
  • Forget to implement backup strategies
  • Overprovision resources without optimization
  • Skip security configuration for production

Works Well With

  • moai-baas-foundation (Enterprise BaaS architecture patterns)
  • moai-domain-backend (Backend deployment patterns)
  • moai-domain-devops (DevOps and CI/CD workflows)
  • moai-essentials-perf (Performance optimization)
  • moai-foundation-trust (Security and compliance)
  • moai-baas-vercel-ext (Frontend deployment comparison)
  • moai-baas-neon-ext (PostgreSQL database integration)
  • moai-domain-database (Database optimization)

Changelog

  • v4.0.0 (2025-11-13): Complete Enterprise v4.0 rewrite with 40% content reduction, 4-layer Progressive Disclosure structure, Context7 integration, November 2025 Railway platform updates, and advanced deployment automation
  • v2.0.0 (2025-11-11): Complete metadata structure, deployment patterns, CI/CD integration
  • v1.0.0 (2025-11-11): Initial Railway full-stack platform

End of Skill | Updated 2025-11-13

Security & Compliance

Container Security

  • Secure base images and vulnerability scanning
  • Runtime security monitoring and threat detection
  • Network isolation and firewall configuration
  • Secret management with encrypted environment variables

Compliance Management

  • GDPR compliance with data protection measures
  • SOC2 Type II security controls
  • Automated security scanning and patching
  • Comprehensive audit logging and monitoring

End of Enterprise Railway Full-Stack Platform Expert v4.0.0

GitHub Repository

modu-ai/moai-adk
Path: src/moai_adk/templates/.claude/skills/moai-baas-railway-ext
agentic-aiagentic-codingagentic-workflowclaudeclaudecodevibe-coding

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill