moai-baas-railway-ext
About
This Claude Skill provides enterprise-grade Railway deployment with AI-powered container orchestration and intelligent CI/CD automation. It integrates Context7 for enhanced development context and handles full-stack application deployment with auto-scaling and database provisioning. Use this skill when you need to deploy and manage scalable modern applications on Railway with advanced AI-assisted orchestration.
Quick Install
Claude Code
Recommended/plugin add https://github.com/modu-ai/moai-adkgit clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-baas-railway-extCopy and paste this command in Claude Code to install this skill
Documentation
Enterprise Railway Full-Stack Platform Expert v4.0.0
Skill Metadata
| Field | Value |
|---|---|
| Skill Name | moai-baas-railway-ext |
| Version | 4.0.0 (2025-11-13) |
| Tier | Enterprise Deployment Platform Expert |
| AI-Powered | β Context7 Integration, Intelligent Architecture |
| Auto-load | On demand when Railway keywords detected |
What It Does
Enterprise Railway Full-Stack Platform expert with AI-powered container orchestration, Context7 integration, and intelligent deployment automation for scalable modern applications.
Revolutionary v4.0.0 capabilities:
- π€ AI-Powered Railway Architecture using Context7 MCP for latest deployment patterns
- π Intelligent Container Orchestration with automated scaling and optimization
- π Real-time Performance Analytics with AI-driven deployment insights
- π Enterprise CI/CD Integration with zero-configuration pipeline automation
- π Predictive Cost Analysis with usage forecasting and resource optimization
When to Use
Automatic triggers:
- Railway deployment architecture and container orchestration discussions
- Full-stack application development and database integration
- CI/CD pipeline setup and automated deployment strategies
- Multi-region deployment and scaling optimization
Manual invocation:
- Designing enterprise Railway architectures with optimal container configuration
- Implementing automated CI/CD pipelines with GitHub integration
- Planning full-stack application migrations to Railway
- Optimizing costs and auto-scaling configuration
Quick Reference (Level 1)
Railway Full-Stack Platform (November 2025)
Core Features Overview
- Container Deployment: Docker container deployment from GitHub
- Database Provisioning: PostgreSQL, MongoDB, Redis with automatic setup
- Multi-Region Deployment: 4+ global regions for optimal latency
- Git-Based CI/CD: Automated deployments from Git commits
- Background Jobs: Scheduled tasks and job processing
- One-Click Rollback: Instant deployment history and rollback
Supported Services
- Applications: Node.js, Python, Ruby, Go, Rust, Java, PHP
- Databases: PostgreSQL, MongoDB, Redis, MySQL
- Static Sites: Next.js, React, Vue, Angular, Hugo
- Background Workers: Bull queue, Celery, Sidekiq integration
- File Storage: Integrated with cloud storage providers
Key Benefits
- Zero Infrastructure Management: No server configuration required
- Developer-Friendly: Focus on code, not deployment complexity
- Auto-Scaling: Automatic scaling based on traffic and load
- Cost Controls: Built-in spending limits and monitoring
Performance Characteristics
- Cold Start: < 2 seconds for container spin-up
- Scaling: Instant horizontal and vertical scaling
- Database Performance: Optimized configurations for each database type
- Global Latency: < 50ms in major regions
Core Implementation (Level 2)
Railway Architecture Intelligence
# AI-powered Railway architecture optimization with Context7
class RailwayArchitectOptimizer:
def __init__(self):
self.context7_client = Context7Client()
self.container_analyzer = ContainerAnalyzer()
self.scaling_optimizer = ScalingOptimizer()
async def design_optimal_railway_architecture(self,
requirements: ApplicationRequirements) -> RailwayArchitecture:
"""Design optimal Railway architecture using AI analysis."""
# Get latest Railway and containerization documentation via Context7
railway_docs = await self.context7_client.get_library_docs(
context7_library_id='/railway/docs',
topic="container deployment ci-cd scaling optimization 2025",
tokens=3000
)
containerization_docs = await self.context7_client.get_library_docs(
context7_library_id='/docker/docs',
topic="optimization best practices orchestration 2025",
tokens=2000
)
# Optimize container configuration
container_optimization = self.container_analyzer.optimize_configuration(
requirements.application_stack,
containerization_docs
)
# Design scaling strategy
scaling_strategy = self.scaling_optimizer.design_scaling_strategy(
requirements.traffic_patterns,
requirements.performance_requirements,
railway_docs
)
return RailwayArchitecture(
application_services=self._design_application_services(requirements),
database_services=self._design_database_services(requirements),
container_configuration=container_optimization,
scaling_strategy=scaling_strategy,
deployment_pipeline=self._design_cicd_pipeline(requirements),
monitoring_setup=self._setup_monitoring(),
cost_analysis=self._analyze_pricing_model(requirements)
)
Multi-Service Deployment Configuration
# Railway multi-service application configuration
version: "1.0"
services:
frontend:
build:
dockerfile: Dockerfile.frontend
context: .
environment:
- NEXT_PUBLIC_API_URL=${API_URL}
- NODE_ENV=production
deploy:
replicas: 2
memory: 512Mi
cpu: 0.5
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:3000/health"]
interval: 30s
timeout: 10s
retries: 3
backend:
build:
dockerfile: Dockerfile.backend
context: .
environment:
- DATABASE_URL=${DATABASE_URL}
- REDIS_URL=${REDIS_URL}
- JWT_SECRET=${JWT_SECRET}
deploy:
replicas: 3
memory: 1Gi
cpu: 1.0
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8000/api/health"]
interval: 30s
timeout: 10s
retries: 3
worker:
build:
dockerfile: Dockerfile.worker
context: .
environment:
- DATABASE_URL=${DATABASE_URL}
- REDIS_URL=${REDIS_URL}
deploy:
replicas: 1
memory: 512Mi
cpu: 0.5
postgres:
image: "postgres:16-alpine"
environment:
- POSTGRES_USER=${POSTGRES_USER}
- POSTGRES_PASSWORD=${POSTGRES_PASSWORD}
- POSTGRES_DB=${POSTGRES_DB}
volume_mounts:
- mountPath: /var/lib/postgresql/data
name: postgres-data
deploy:
memory: 2Gi
cpu: 1.0
redis:
image: "redis:7-alpine"
deploy:
memory: 512Mi
cpu: 0.5
CI/CD Pipeline Integration
# GitHub Actions workflow for Railway deployment
name: Deploy to Railway
on:
push:
branches: [main, develop]
pull_request:
branches: [main]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: '20'
cache: 'npm'
- name: Install dependencies
run: npm ci
- name: Run tests
run: npm test
- name: Run E2E tests
run: npm run test:e2e
deploy:
needs: test
runs-on: ubuntu-latest
if: github.ref == 'refs/heads/main'
steps:
- uses: actions/checkout@v4
- name: Install Railway CLI
run: npm install -g @railway/cli
- name: Deploy to Railway
env:
RAILWAY_TOKEN: ${{ secrets.RAILWAY_TOKEN }}
run: |
railway login --token $RAILWAY_TOKEN
railway up --service frontend,backend,worker
Advanced Implementation (Level 3)
Advanced Scaling Strategies
class RailwayScalingManager:
def __init__(self):
self.railway_client = RailwayClient()
self.metrics_analyzer = MetricsAnalyzer()
self.cost_optimizer = CostOptimizer()
async def implement_intelligent_scaling(self,
project_id: str,
scaling_config: ScalingConfiguration) -> ScalingImplementation:
"""Implement intelligent auto-scaling for Railway services."""
# Analyze current usage patterns
usage_analysis = await self.metrics_analyzer.analyze_usage_patterns(
project_id, timeframe="7d"
)
# Configure predictive scaling
predictive_config = self._configure_predictive_scaling(
usage_analysis,
scaling_config
)
# Set up cost optimization
cost_optimization = self.cost_optimizer.optimize_scaling_costs(
predictive_config,
scaling_config.budget_constraints
)
return ScalingImplementation(
scaling_rules=self._create_scaling_rules(predictive_config),
monitoring_setup=self._setup_scaling_monitoring(),
cost_controls=cost_optimization,
performance_alerts=self._configure_performance_alerts()
)
Database Optimization Patterns
// Railway PostgreSQL optimization with connection pooling
import { Pool } from 'pg';
// Production-ready database configuration
const productionPool = new Pool({
connectionString: process.env.DATABASE_URL,
ssl: { rejectUnauthorized: false },
// Optimized for Railway's containerized environment
max: 20, // Maximum connections in pool
min: 5, // Minimum connections to maintain
idleTimeoutMillis: 30000, // Close idle connections after 30s
connectionTimeoutMillis: 2000, // Give up connecting after 2s
statement_timeout: 10000, // Kill slow queries after 10s
// Connection retry logic
retry: 3,
retryDelay: 1000,
});
// Application database service
export class DatabaseService {
private pool = productionPool;
async query<T>(text: string, params?: any[]): Promise<T[]> {
const start = Date.now();
const client = await this.pool.connect();
try {
const result = await client.query(text, params);
const duration = Date.now() - start;
// Log slow queries for optimization
if (duration > 1000) {
console.warn('Slow query detected:', {
query: text,
duration,
rowCount: result.rowCount
});
}
return result.rows;
} finally {
client.release();
}
}
async transaction<T>(callback: (client: any) => Promise<T>): Promise<T> {
const client = await this.pool.connect();
try {
await client.query('BEGIN');
const result = await callback(client);
await client.query('COMMIT');
return result;
} catch (error) {
await client.query('ROLLBACK');
throw error;
} finally {
client.release();
}
}
}
// Health check endpoint
app.get('/api/health', async (req, res) => {
try {
await db.query('SELECT 1');
res.status(200).json({
status: 'healthy',
timestamp: new Date().toISOString(),
database: 'connected'
});
} catch (error) {
res.status(503).json({
status: 'unhealthy',
timestamp: new Date().toISOString(),
database: 'disconnected'
});
}
});
Environment Management
class RailwayEnvironmentManager:
def __init__(self):
self.railway_client = RailwayClient()
self.config_manager = ConfigurationManager()
def setup_production_environment(self, project_id: str, config: EnvironmentConfig) -> EnvironmentSetup:
"""Configure production environment with best practices."""
# Set up production variables
production_vars = {
# Application configuration
'NODE_ENV': 'production',
'LOG_LEVEL': 'info',
# Database configuration
'DATABASE_URL': config.database_url,
'DATABASE_POOL_SIZE': '20',
'DATABASE_TIMEOUT': '10000',
# Security configuration
'JWT_SECRET': config.jwt_secret,
'ENCRYPTION_KEY': config.encryption_key,
'CORS_ORIGIN': config.frontend_url,
# External services
'REDIS_URL': config.redis_url,
'EMAIL_SERVICE_API_KEY': config.email_api_key,
# Monitoring and observability
'SENTRY_DSN': config.sentry_dsn,
'LOGTAIL_SOURCE_TOKEN': config.logtail_token
}
# Configure environment variables
env_setup = self.railway_client.set_environment_variables(
project_id, production_vars
)
return EnvironmentSetup(
variables=production_vars,
security_config=self._configure_security(),
monitoring_config=self._configure_monitoring(),
backup_config=self._configure_backups()
)
Reference & Integration (Level 4)
API Reference
Core Railway Operations
deploy_service(project_id, service_config)- Deploy servicecreate_database(project_id, db_type)- Provision databasescale_service(service_id, replicas, resources)- Scale servicerollback_deployment(service_id, deployment_id)- Rollback deploymentset_environment_variables(project_id, variables)- Set environment variables
Context7 Integration
get_latest_railway_documentation()- Official Railway docs via Context7analyze_container_optimization()- Container best practices via Context7optimize_deployment_strategy()- Deployment patterns via Context7
Best Practices (November 2025)
DO
- Use separate environments for development, staging, and production
- Implement comprehensive health checks for all services
- Configure proper logging and monitoring for observability
- Use connection pooling for database connections
- Set up automated testing before deployments
- Monitor costs and implement spending limits
- Use volume mounts for persistent data storage
- Implement proper error handling and retry logic
DON'T
- Hardcode environment variables in application code
- Skip health checks and monitoring setup
- Use production database for development testing
- Ignore scaling limits and cost controls
- Deploy without proper testing
- Forget to implement backup strategies
- Overprovision resources without optimization
- Skip security configuration for production
Works Well With
moai-baas-foundation(Enterprise BaaS architecture patterns)moai-domain-backend(Backend deployment patterns)moai-domain-devops(DevOps and CI/CD workflows)moai-essentials-perf(Performance optimization)moai-foundation-trust(Security and compliance)moai-baas-vercel-ext(Frontend deployment comparison)moai-baas-neon-ext(PostgreSQL database integration)moai-domain-database(Database optimization)
Changelog
- v4.0.0 (2025-11-13): Complete Enterprise v4.0 rewrite with 40% content reduction, 4-layer Progressive Disclosure structure, Context7 integration, November 2025 Railway platform updates, and advanced deployment automation
- v2.0.0 (2025-11-11): Complete metadata structure, deployment patterns, CI/CD integration
- v1.0.0 (2025-11-11): Initial Railway full-stack platform
End of Skill | Updated 2025-11-13
Security & Compliance
Container Security
- Secure base images and vulnerability scanning
- Runtime security monitoring and threat detection
- Network isolation and firewall configuration
- Secret management with encrypted environment variables
Compliance Management
- GDPR compliance with data protection measures
- SOC2 Type II security controls
- Automated security scanning and patching
- Comprehensive audit logging and monitoring
End of Enterprise Railway Full-Stack Platform Expert v4.0.0
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
