gcp-cloud-functions
About
This skill helps developers deploy serverless functions on Google Cloud Platform for event-driven computing. It supports triggers from services like HTTP, Pub/Sub, and Cloud Storage, and handles IAM roles, environment variables, and monitoring. Use it for building scalable solutions like APIs, data processing pipelines, and real-time file processing.
Documentation
GCP Cloud Functions
Overview
Google Cloud Functions enables event-driven serverless computing on Google Cloud Platform. Build functions with automatic scaling, integrated security, and seamless integration with Google Cloud services for rapid development.
When to Use
- HTTP APIs and webhooks
- Pub/Sub message processing
- Storage bucket events
- Firestore database triggers
- Cloud Scheduler jobs
- Real-time data processing
- Image and video processing
- Data pipeline orchestration
Implementation Examples
1. Cloud Function Creation with gcloud CLI
# Install Google Cloud SDK
curl https://sdk.cloud.google.com | bash
exec -l $SHELL
# Initialize and authenticate
gcloud init
gcloud auth application-default login
# Set project
gcloud config set project MY_PROJECT_ID
# Create service account
gcloud iam service-accounts create cloud-function-sa \
--display-name "Cloud Function Service Account"
# Grant permissions
gcloud projects add-iam-policy-binding MY_PROJECT_ID \
--member="serviceAccount:cloud-function-sa@MY_PROJECT_ID.iam.gserviceaccount.com" \
--role="roles/cloudfunctions.invoker"
# Deploy HTTP function
gcloud functions deploy my-http-function \
--gen2 \
--runtime nodejs18 \
--region us-central1 \
--source ./src \
--entry-point httpHandler \
--trigger-http \
--allow-unauthenticated \
--timeout 60 \
--memory 256MB \
--max-instances 100 \
--set-env-vars NODE_ENV=production,API_KEY=xxx \
--service-account cloud-function-sa@MY_PROJECT_ID.iam.gserviceaccount.com
# Deploy Pub/Sub function
gcloud functions deploy my-pubsub-function \
--gen2 \
--runtime nodejs18 \
--region us-central1 \
--source ./src \
--entry-point pubsubHandler \
--trigger-topic my-topic \
--memory 256MB \
--timeout 300 \
--service-account cloud-function-sa@MY_PROJECT_ID.iam.gserviceaccount.com
# Deploy Cloud Storage function
gcloud functions deploy my-storage-function \
--gen2 \
--runtime nodejs18 \
--region us-central1 \
--source ./src \
--entry-point storageHandler \
--trigger-bucket my-bucket \
--trigger-location us-central1 \
--timeout 60 \
--service-account cloud-function-sa@MY_PROJECT_ID.iam.gserviceaccount.com
# List functions
gcloud functions list
# Get function details
gcloud functions describe my-http-function --gen2 --region us-central1
# Call function
gcloud functions call my-http-function \
--region us-central1 \
--data '{"name":"John"}'
# View logs
gcloud functions logs read my-http-function --limit 50 --gen2 --region us-central1
# Delete function
gcloud functions delete my-http-function --gen2 --region us-central1
2. Cloud Functions Implementation (Node.js)
// HTTP Trigger Function
exports.httpHandler = async (req, res) => {
try {
// Enable CORS
res.set('Access-Control-Allow-Origin', '*');
res.set('Access-Control-Allow-Methods', 'GET, POST, OPTIONS');
if (req.method === 'OPTIONS') {
res.status(204).send('');
return;
}
// Parse request
const { name } = req.query;
if (!name) {
return res.status(400).json({ error: 'Name is required' });
}
// Log with Cloud Logging
console.log(JSON.stringify({
severity: 'INFO',
message: 'Processing request',
name: name,
requestId: req.id
}));
// Business logic
const response = {
message: `Hello ${name}!`,
timestamp: new Date().toISOString()
};
res.status(200).json(response);
} catch (error) {
console.error(JSON.stringify({
severity: 'ERROR',
message: error.message,
stack: error.stack
}));
res.status(500).json({ error: 'Internal server error' });
}
};
// Pub/Sub Trigger Function
exports.pubsubHandler = async (message, context) => {
try {
// Decode Pub/Sub message
const pubsubMessage = message.data
? Buffer.from(message.data, 'base64').toString()
: null;
console.log('Received message:', pubsubMessage);
// Parse message
const data = JSON.parse(pubsubMessage);
// Process message asynchronously
await processMessage(data);
console.log('Message processed successfully');
} catch (error) {
console.error('Error processing message:', error);
throw error; // Function will retry
}
};
// Cloud Storage Trigger Function
exports.storageHandler = async (file, context) => {
try {
const { name, bucket } = file;
console.log(JSON.stringify({
message: 'Processing storage event',
bucket: bucket,
file: name,
eventId: context.eventId,
eventType: context.eventType
}));
// Check file type
if (!name.endsWith('.jpg') && !name.endsWith('.png')) {
console.log('Skipping non-image file');
return;
}
// Process image
await processImage(bucket, name);
console.log('Image processed successfully');
} catch (error) {
console.error('Error processing file:', error);
throw error;
}
};
// Cloud Scheduler (CRON) Function
exports.cronHandler = async (req, res) => {
try {
console.log('Scheduled job started');
// Run batch processing
await performBatchJob();
res.status(200).json({ message: 'Batch job completed' });
} catch (error) {
console.error('Error in batch job:', error);
res.status(500).json({ error: error.message });
}
};
// Helper functions
async function processMessage(data) {
// Business logic
return new Promise(resolve => {
setTimeout(() => resolve(), 1000);
});
}
async function processImage(bucket, filename) {
// Use Cloud Vision API or similar
return true;
}
async function performBatchJob() {
// Batch processing logic
return true;
}
3. Terraform Cloud Functions Configuration
# cloud-functions.tf
terraform {
required_providers {
google = {
source = "hashicorp/google"
version = "~> 5.0"
}
}
}
provider "google" {
project = var.project_id
region = var.region
}
variable "project_id" {
description = "GCP Project ID"
}
variable "region" {
default = "us-central1"
}
# Service account for functions
resource "google_service_account" "function_sa" {
account_id = "cloud-function-sa"
display_name = "Cloud Function Service Account"
}
# Grant invoker role
resource "google_project_iam_member" "function_invoker" {
project = var.project_id
role = "roles/cloudfunctions.invoker"
member = "serviceAccount:${google_service_account.function_sa.email}"
}
# Grant Cloud Logging role
resource "google_project_iam_member" "function_logs" {
project = var.project_id
role = "roles/logging.logWriter"
member = "serviceAccount:${google_service_account.function_sa.email}"
}
# Source archive bucket
resource "google_storage_bucket" "function_source" {
name = "${var.project_id}-function-source"
location = var.region
}
# Upload function code
resource "google_storage_bucket_object" "function_zip" {
name = "function-${data.archive_file.function.output_md5}.zip"
bucket = google_storage_bucket.function_source.name
source = data.archive_file.function.output_path
}
# Archive function code
data "archive_file" "function" {
type = "zip"
source_dir = "${path.module}/src"
output_path = "${path.module}/function.zip"
}
# HTTP Cloud Function
resource "google_cloudfunctions2_function" "http_function" {
name = "my-http-function"
location = var.region
description = "HTTP trigger function"
build_config {
runtime = "nodejs18"
entry_point = "httpHandler"
source {
storage_source {
bucket = google_storage_bucket.function_source.name
object = google_storage_bucket_object.function_zip.name
}
}
}
service_config {
max_instance_count = 100
available_memory_mb = 256
timeout_seconds = 60
service_account_email = google_service_account.function_sa.email
environment_variables = {
NODE_ENV = "production"
API_KEY = "your-api-key"
}
}
labels = {
env = "production"
}
}
# Allow public HTTP access
resource "google_cloudfunctions2_function_iam_member" "http_public" {
cloud_function = google_cloudfunctions2_function.http_function.name
role = "roles/cloudfunctions.invoker"
member = "allUsers"
}
# Pub/Sub topic
resource "google_pubsub_topic" "messages" {
name = "message-topic"
}
# Pub/Sub Cloud Function
resource "google_cloudfunctions2_function" "pubsub_function" {
name = "my-pubsub-function"
location = var.region
description = "Pub/Sub trigger function"
build_config {
runtime = "nodejs18"
entry_point = "pubsubHandler"
source {
storage_source {
bucket = google_storage_bucket.function_source.name
object = google_storage_bucket_object.function_zip.name
}
}
}
service_config {
max_instance_count = 100
available_memory_mb = 256
timeout_seconds = 300
service_account_email = google_service_account.function_sa.email
}
event_trigger {
trigger_region = var.region
event_type = "google.cloud.pubsub.topic.publish"
pubsub_topic = google_pubsub_topic.messages.id
}
}
# Cloud Storage bucket
resource "google_storage_bucket" "uploads" {
name = "${var.project_id}-uploads"
location = var.region
}
# Cloud Storage trigger function
resource "google_cloudfunctions2_function" "storage_function" {
name = "my-storage-function"
location = var.region
description = "Cloud Storage trigger function"
build_config {
runtime = "nodejs18"
entry_point = "storageHandler"
source {
storage_source {
bucket = google_storage_bucket.function_source.name
object = google_storage_bucket_object.function_zip.name
}
}
}
service_config {
max_instance_count = 50
available_memory_mb = 256
timeout_seconds = 60
service_account_email = google_service_account.function_sa.email
}
event_trigger {
trigger_region = var.region
event_type = "google.storage.object.finalize"
resource = google_storage_bucket.uploads.name
}
}
# Cloud Scheduler job (CRON)
resource "google_cloud_scheduler_job" "batch_job" {
name = "batch-job-scheduler"
description = "Scheduled batch job"
schedule = "0 2 * * *" # Daily at 2 AM
time_zone = "UTC"
attempt_deadline = "320s"
region = var.region
retry_config {
retry_count = 1
}
http_target {
uri = google_cloudfunctions2_function.http_function.service_config[0].uri
http_method = "POST"
headers = {
"Content-Type" = "application/json"
}
body = base64encode(jsonencode({
job_type = "batch"
}))
oidc_token {
service_account_email = google_service_account.function_sa.email
}
}
}
# Cloud Logging sink
resource "google_logging_project_sink" "function_logs" {
name = "cloud-function-logs"
destination = "logging.googleapis.com/projects/${var.project_id}/logs/my-http-function"
filter = "resource.type=\"cloud_function\" AND resource.labels.function_name=\"my-http-function\""
}
# Monitoring alert
resource "google_monitoring_alert_policy" "function_errors" {
display_name = "Cloud Function Error Rate"
combiner = "OR"
conditions {
display_name = "Error rate threshold"
condition_threshold {
filter = "metric.type=\"cloudfunctions.googleapis.com/function/error_count\" AND resource.type=\"cloud_function\""
duration = "60s"
comparison = "COMPARISON_GT"
threshold_value = 10
aggregations {
alignment_period = "60s"
per_series_aligner = "ALIGN_RATE"
}
}
}
}
output "http_function_url" {
value = google_cloudfunctions2_function.http_function.service_config[0].uri
}
Best Practices
✅ DO
- Use service accounts with least privilege
- Store secrets in Secret Manager
- Implement proper error handling
- Use environment variables for configuration
- Monitor with Cloud Logging and Cloud Monitoring
- Set appropriate memory and timeout
- Use event filters to reduce invocations
- Implement idempotent functions
❌ DON'T
- Store secrets in code
- Use default service account
- Create long-running functions
- Ignore error handling
- Deploy without testing
- Use unauthenticated access for sensitive functions
Monitoring
- Cloud Logging for application logs
- Cloud Monitoring for metrics
- Error Reporting for error tracking
- Cloud Trace for distributed tracing
- Cloud Profiler for performance analysis
Resources
Quick Install
/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/gcp-cloud-functionsCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
subagent-driven-development
DevelopmentThis skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.
algorithmic-art
MetaThis Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.
executing-plans
DesignUse the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.
cost-optimization
OtherThis Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.
