Back to Skills

qwen_telemetry_cleanup_strategist

Foundup
Updated Today
17 views
4
2
4
View on GitHub
Othergeneral

About

This skill provides strategic planning for YouTube telemetry cleanup by analyzing retention classifications from the Gemma agent. It determines optimal cleanup strategies and coordinates safe execution workflows for downstream agents. Use it when you need automated decision-making for telemetry lifecycle management within autonomous operations.

Documentation

Qwen Telemetry Cleanup Strategist

Purpose: Strategic analysis and safe execution planning for YouTube DAE telemetry lifecycle management

Architecture: Phase 2 of Gemma→Qwen→0102 cleanup wardrobe pattern

WSP Compliance

  • WSP 15: Module Prioritization Scoring (MPS) for cleanup impact analysis
  • WSP 77: Agent Coordination (receives Gemma classification, plans for 0102 execution)
  • WSP 91: DAEMON Observability (cardiovascular telemetry health)
  • WSP 96: WRE Skills Wardrobe (autonomous recursive improvement)

Task Description

Analyze Gemma's retention classification and create a safe, prioritized cleanup execution plan with risk assessment and rollback strategy.

Input Contract

Receives output from gemma_telemetry_retention_detector:

{
  "gemma_scan": {
    "scan_timestamp": "2025-10-27T20:00:00Z",
    "total_records_scanned": 3719,
    "categories": {
      "keep_recent": {"count": 1200, "age_range_days": "0-30", "disk_mb": 45},
      "keep_training": {"count": 1500, "age_range_days": "30-90", "disk_mb": 95},
      "archive_candidate": {"count": 800, "age_range_days": "91-365", "disk_mb": 70},
      "purge_candidate": {"count": 219, "age_range_days": ">365", "disk_mb": 19}
    },
    "recommendation": "archive_and_vacuum",
    "estimated_reclaim_mb": 89
  },
  "execution_context": {
    "youtube_dae_active": false,
    "disk_usage_percent": 45,
    "last_cleanup": "2024-08-15T10:00:00Z"
  }
}

Strategic Analysis Framework

Step 1: Risk Assessment

Analyze operational risk of cleanup:

risk_factors = {
    "youtube_dae_active": "HIGH" if active else "LOW",
    "concurrent_writes": "HIGH" if heartbeats_last_5min > 0 else "LOW",
    "data_age": "LOW" if all_records > 90_days else "MEDIUM",
    "disk_pressure": "HIGH" if disk_usage > 80 else "LOW"
}

overall_risk = calculate_mps_risk_score(risk_factors)

WSP 15 MPS Scoring:

Operational Risk Score =
  (youtube_dae_active ? 10 : 0) +
  (concurrent_writes ? 8 : 0) +
  (data_age_recent ? 6 : 0) +
  (disk_pressure ? 4 : 0)

Low Risk: 0-5 (proceed immediately)
Medium Risk: 6-12 (proceed with caution)
High Risk: 13+ (defer until safer window)

Step 2: Retention Strategy Decision

Analyze training value vs disk pressure:

training_value = {
    "keep_recent": 1.0,     # Critical - active monitoring
    "keep_training": 0.85,  # High - pattern learning
    "archive_candidate": 0.4, # Medium - historical reference
    "purge_candidate": 0.1   # Low - minimal value
}

# Apply MPS formula
mps_score = sum(
    count * training_value[category] * (1 - age_decay_factor)
    for category, count in gemma_scan["categories"].items()
)

Decision Matrix:

ConditionActionReasoning
Disk <50% + Training value HIGHKEEP ALLTraining data more valuable than disk space
Disk >80% + Old records >1000ARCHIVE + VACUUMReclaim space urgently
YouTube DAE activeDEFER CLEANUPAvoid interfering with live telemetry writes
Last cleanup >180 daysPROACTIVE CLEANUPPrevent unbounded growth

Step 3: Execution Plan Generation

Safe cleanup plan with rollback:

{
  "plan_id": "telemetry_cleanup_20251027_200000",
  "risk_assessment": {
    "overall_risk": "LOW",
    "mps_score": 6.2,
    "risk_factors": {
      "youtube_dae_active": "LOW",
      "concurrent_writes": "LOW",
      "data_age": "LOW",
      "disk_pressure": "LOW"
    }
  },
  "actions": [
    {
      "step": 1,
      "action": "export_archive_candidates",
      "target": "data/foundups.db::youtube_heartbeats",
      "filter": "timestamp < '2024-10-01T00:00:00Z'",
      "output": "data/telemetry_archive/youtube_heartbeats_2024_archive.jsonl",
      "estimated_records": 800,
      "estimated_size_mb": 70,
      "risk": "LOW",
      "rollback": "reimport from JSONL archive"
    },
    {
      "step": 2,
      "action": "delete_archived_records",
      "target": "data/foundups.db::youtube_heartbeats",
      "filter": "timestamp < '2024-10-01T00:00:00Z'",
      "estimated_records": 800,
      "risk": "MEDIUM",
      "safety_check": "verify archive file exists and is valid JSON"
    },
    {
      "step": 3,
      "action": "vacuum_database",
      "target": "data/foundups.db",
      "estimated_reclaim_mb": 70,
      "risk": "LOW",
      "note": "VACUUM reclaims disk space after DELETE"
    },
    {
      "step": 4,
      "action": "purge_old_records",
      "target": "data/foundups.db::youtube_heartbeats",
      "filter": "timestamp < '2023-10-27T00:00:00Z'",
      "estimated_records": 219,
      "estimated_reclaim_mb": 19,
      "risk": "LOW",
      "justification": "Records >1 year old have minimal training value"
    }
  ],
  "expected_outcomes": {
    "records_kept": 2700,
    "records_archived": 800,
    "records_purged": 219,
    "disk_reclaimed_mb": 89,
    "database_size_after_mb": 140
  },
  "rollback_strategy": {
    "archive_location": "data/telemetry_archive/youtube_heartbeats_2024_archive.jsonl",
    "reimport_command": "python scripts/reimport_telemetry_archive.py youtube_heartbeats_2024_archive.jsonl",
    "estimated_restore_time_minutes": 2
  },
  "execution_window": {
    "preferred": "YouTube DAE inactive",
    "defer_if": "heartbeats_last_5min > 0",
    "max_defer_hours": 24
  }
}

Output Contract

{
  "decision": "PROCEED_WITH_CLEANUP",
  "confidence": 0.92,
  "risk_assessment": {
    "overall_risk": "LOW",
    "mps_score": 6.2
  },
  "execution_plan": { ... },
  "reasoning": "Low operational risk (YouTube DAE inactive), disk usage healthy (45%), but proactive cleanup recommended (last cleanup 439 days ago). Archive 800 records (91-365 days old), purge 219 records (>365 days old), reclaim 89MB.",
  "alternatives_considered": [
    {
      "option": "KEEP_ALL",
      "pros": ["Maximize training data", "Zero risk"],
      "cons": ["Unbounded growth", "Database bloat"],
      "rejected_reason": "Last cleanup 439 days ago - proactive maintenance needed"
    },
    {
      "option": "PURGE_IMMEDIATELY",
      "pros": ["Maximum space reclaim"],
      "cons": ["Lose training data", "No rollback"],
      "rejected_reason": "Archive-first strategy safer and preserves training value"
    }
  ],
  "validation_required": true,
  "validation_criteria": [
    "0102 confirms archive export succeeded",
    "0102 verifies YouTube DAE inactive",
    "0102 approves risk assessment"
  ]
}

Qwen Strategic Reasoning

Training objectives:

  1. Risk assessment accuracy - Learn to identify unsafe cleanup windows
  2. MPS scoring calibration - Balance training value vs disk pressure
  3. Execution ordering - Safe sequence (export → verify → delete → vacuum)
  4. Rollback planning - Always provide recovery path

Pattern memory:

  • Store successful cleanup executions
  • Track disk reclamation accuracy (estimated vs actual)
  • Learn optimal cleanup intervals (prevent reactive cleanup)

Integration with WRE

Qwen's decision triggers 0102 validation:

if qwen_decision["decision"] == "PROCEED_WITH_CLEANUP":
    # Phase 3: 0102 validates and executes
    validation_result = wre_orchestrator.execute_skill(
        skill_name="0102_telemetry_cleanup_executor",
        input_context={
            "qwen_plan": qwen_decision["execution_plan"],
            "risk_assessment": qwen_decision["risk_assessment"]
        }
    )

Performance Metrics

  • Strategic analysis: 150-300ms (complex decision tree)
  • Token cost: 200-500 tokens (LLM reasoning for risk assessment)
  • Pattern memory: Store execution outcomes for recursive learning

Next Phase

Trigger Phase 3: 0102 validation and safe execution with:

  • Archive export verification
  • Safe DELETE with WHERE clause validation
  • VACUUM with lock management
  • Rollback testing (optional dry-run)

Quick Install

/plugin add https://github.com/Foundup/Foundups-Agent/tree/main/qwen_telemetry_cleanup_strategist

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

Foundup/Foundups-Agent
Path: modules/communication/livechat/skills/qwen_telemetry_cleanup_strategist
bitcoinblockchain-technologydaesdaofoundupspartifact

Related Skills