Back to Skills

whisper

zechenzhangAGI
Updated Today
28 views
62
2
62
View on GitHub
Otherai

About

This Claude Skill provides OpenAI's Whisper model for multilingual speech recognition and translation. It supports 99 languages, handles transcription to text and translation to English, and works well with noisy audio. Use it for speech-to-text tasks, podcast transcription, or multilingual audio processing when you need robust ASR capabilities.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs
Git CloneAlternative
git clone https://github.com/zechenzhangAGI/AI-research-SKILLs.git ~/.claude/skills/whisper

Copy and paste this command in Claude Code to install this skill

Documentation

Whisper - Robust Speech Recognition

OpenAI's multilingual speech recognition model.

When to use Whisper

Use when:

  • Speech-to-text transcription (99 languages)
  • Podcast/video transcription
  • Meeting notes automation
  • Translation to English
  • Noisy audio transcription
  • Multilingual audio processing

Metrics:

  • 72,900+ GitHub stars
  • 99 languages supported
  • Trained on 680,000 hours of audio
  • MIT License

Use alternatives instead:

  • AssemblyAI: Managed API, speaker diarization
  • Deepgram: Real-time streaming ASR
  • Google Speech-to-Text: Cloud-based

Quick start

Installation

# Requires Python 3.8-3.11
pip install -U openai-whisper

# Requires ffmpeg
# macOS: brew install ffmpeg
# Ubuntu: sudo apt install ffmpeg
# Windows: choco install ffmpeg

Basic transcription

import whisper

# Load model
model = whisper.load_model("base")

# Transcribe
result = model.transcribe("audio.mp3")

# Print text
print(result["text"])

# Access segments
for segment in result["segments"]:
    print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s] {segment['text']}")

Model sizes

# Available models
models = ["tiny", "base", "small", "medium", "large", "turbo"]

# Load specific model
model = whisper.load_model("turbo")  # Fastest, good quality
ModelParametersEnglish-onlyMultilingualSpeedVRAM
tiny39M~32x~1 GB
base74M~16x~1 GB
small244M~6x~2 GB
medium769M~2x~5 GB
large1550M1x~10 GB
turbo809M~8x~6 GB

Recommendation: Use turbo for best speed/quality, base for prototyping

Transcription options

Language specification

# Auto-detect language
result = model.transcribe("audio.mp3")

# Specify language (faster)
result = model.transcribe("audio.mp3", language="en")

# Supported: en, es, fr, de, it, pt, ru, ja, ko, zh, and 89 more

Task selection

# Transcription (default)
result = model.transcribe("audio.mp3", task="transcribe")

# Translation to English
result = model.transcribe("spanish.mp3", task="translate")
# Input: Spanish audio → Output: English text

Initial prompt

# Improve accuracy with context
result = model.transcribe(
    "audio.mp3",
    initial_prompt="This is a technical podcast about machine learning and AI."
)

# Helps with:
# - Technical terms
# - Proper nouns
# - Domain-specific vocabulary

Timestamps

# Word-level timestamps
result = model.transcribe("audio.mp3", word_timestamps=True)

for segment in result["segments"]:
    for word in segment["words"]:
        print(f"{word['word']} ({word['start']:.2f}s - {word['end']:.2f}s)")

Temperature fallback

# Retry with different temperatures if confidence low
result = model.transcribe(
    "audio.mp3",
    temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
)

Command line usage

# Basic transcription
whisper audio.mp3

# Specify model
whisper audio.mp3 --model turbo

# Output formats
whisper audio.mp3 --output_format txt     # Plain text
whisper audio.mp3 --output_format srt     # Subtitles
whisper audio.mp3 --output_format vtt     # WebVTT
whisper audio.mp3 --output_format json    # JSON with timestamps

# Language
whisper audio.mp3 --language Spanish

# Translation
whisper spanish.mp3 --task translate

Batch processing

import os

audio_files = ["file1.mp3", "file2.mp3", "file3.mp3"]

for audio_file in audio_files:
    print(f"Transcribing {audio_file}...")
    result = model.transcribe(audio_file)

    # Save to file
    output_file = audio_file.replace(".mp3", ".txt")
    with open(output_file, "w") as f:
        f.write(result["text"])

Real-time transcription

# For streaming audio, use faster-whisper
# pip install faster-whisper

from faster_whisper import WhisperModel

model = WhisperModel("base", device="cuda", compute_type="float16")

# Transcribe with streaming
segments, info = model.transcribe("audio.mp3", beam_size=5)

for segment in segments:
    print(f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}")

GPU acceleration

import whisper

# Automatically uses GPU if available
model = whisper.load_model("turbo")

# Force CPU
model = whisper.load_model("turbo", device="cpu")

# Force GPU
model = whisper.load_model("turbo", device="cuda")

# 10-20× faster on GPU

Integration with other tools

Subtitle generation

# Generate SRT subtitles
whisper video.mp4 --output_format srt --language English

# Output: video.srt

With LangChain

from langchain.document_loaders import WhisperTranscriptionLoader

loader = WhisperTranscriptionLoader(file_path="audio.mp3")
docs = loader.load()

# Use transcription in RAG
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings

vectorstore = Chroma.from_documents(docs, OpenAIEmbeddings())

Extract audio from video

# Use ffmpeg to extract audio
ffmpeg -i video.mp4 -vn -acodec pcm_s16le audio.wav

# Then transcribe
whisper audio.wav

Best practices

  1. Use turbo model - Best speed/quality for English
  2. Specify language - Faster than auto-detect
  3. Add initial prompt - Improves technical terms
  4. Use GPU - 10-20× faster
  5. Batch process - More efficient
  6. Convert to WAV - Better compatibility
  7. Split long audio - <30 min chunks
  8. Check language support - Quality varies by language
  9. Use faster-whisper - 4× faster than openai-whisper
  10. Monitor VRAM - Scale model size to hardware

Performance

ModelReal-time factor (CPU)Real-time factor (GPU)
tiny~0.32~0.01
base~0.16~0.01
turbo~0.08~0.01
large~1.0~0.05

Real-time factor: 0.1 = 10× faster than real-time

Language support

Top-supported languages:

  • English (en)
  • Spanish (es)
  • French (fr)
  • German (de)
  • Italian (it)
  • Portuguese (pt)
  • Russian (ru)
  • Japanese (ja)
  • Korean (ko)
  • Chinese (zh)

Full list: 99 languages total

Limitations

  1. Hallucinations - May repeat or invent text
  2. Long-form accuracy - Degrades on >30 min audio
  3. Speaker identification - No diarization
  4. Accents - Quality varies
  5. Background noise - Can affect accuracy
  6. Real-time latency - Not suitable for live captioning

Resources

GitHub Repository

zechenzhangAGI/AI-research-SKILLs
Path: 18-multimodal/whisper
aiai-researchclaudeclaude-codeclaude-skillscodex

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill