Back to Skills

moai-streaming-ui

modu-ai
Updated Yesterday
23 views
424
78
424
View on GitHub
Designaiautomationdesign

About

moai-streaming-ui provides enhanced visual feedback during long-running operations with progress indicators, status displays, and interactive elements. Use this skill when you need to improve user experience during complex workflows by showing real-time progress and providing clear user feedback. It integrates seamlessly with tools like Bash, Read, and Write for comprehensive streaming UI capabilities.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/modu-ai/moai-adk
Git CloneAlternative
git clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-streaming-ui

Copy and paste this command in Claude Code to install this skill

Documentation

Enhanced Streaming UI System

Skill Metadata

FieldValue
Version1.0.0
TierAlfred (User Experience)
Auto-loadDuring long-running operations
PurposeEnhanced visual feedback and progress indication

What It Does

Advanced streaming UI system that provides rich visual feedback, progress indicators, and interactive status displays during complex operations. Enhances user experience by making long-running processes transparent and engaging.

Core capabilities:

  • ✅ Multi-style progress indicators (bars, spinners, percentages)
  • ✅ Real-time status updates and progress tracking
  • ✅ Interactive user feedback mechanisms
  • ✅ Color-coded severity levels and alerts
  • ✅ Step-by-step workflow visualization
  • ✅ Performance metrics and timing information
  • ✅ Error state handling and recovery guidance
  • ✅ Completion summaries and next step suggestions

When to Use

  • ✅ During long-running operations (>5 seconds)
  • ✅ When executing multi-step workflows
  • ✅ During file operations or API calls
  • ✅ When user needs progress feedback
  • ✅ During background processing tasks
  • ✅ When running tests or builds
  • ✅ During complex Alfred command executions

UI Components Library

1. Progress Indicators

Progress Bars

# Basic progress bar
progress_bar(65, 100, "Installing dependencies")
# Output: [████████████████████                    ] 65%

# Animated progress bar
animated_progress(current_step, total_steps, steps)
# Output: Step 3/5: [⚙️] Configuring database...

Spinners

# Basic spinner
spinner("Processing files", "dots")
# Output: Processing files...

# Custom spinner
spinner("Downloading", "arrow")
# Output: Downloading ↗

Percentage Display

# Percentage with context
percentage_with_context(45, "Code compilation")
# Output: 📊 Code compilation: 45% complete

2. Status Indicators

Success States

success_indicator("Build completed successfully")
# Output: ✅ Build completed successfully

success_with_details("Tests passed", "127/128 tests passed")
# Output: ✅ Tests passed (127/128)

Warning States

warning_indicator("Memory usage high")
# Output: ⚠️ Memory usage high: 85% used

warning_with_action("Disk space low", "Clear cache files")
# Output: ⚠️ Disk space low → Action: Clear cache files

Error States

error_indicator("Connection failed")
# Output: ❌ Connection failed

error_with_recovery("API timeout", "Retry with exponential backoff")
# Output: ❌ API timeout → Recovery: Retry with exponential backoff

3. Interactive Elements

User Prompts

user_prompt("Continue with deployment?", ["yes", "no", "cancel"])
# Output: ❓ Continue with deployment? [Y]es [N]o [C]ancel

user_prompt_with_default("Choose environment", ["dev", "staging", "prod"], "staging")
# Output: 🌍 Choose environment [D]ev [S]taging [P]rod (default: staging)

Confirmation Required

confirmation_required("Delete 15 files?")
# Output: ⚠️ Confirmation required: Delete 15 files? [y/N]

confirmation_with_details("Merge branch", "main → feature/auth")
# Output: 🔄 Confirm merge: main → feature/auth? [y/N]

4. Workflow Visualization

Step Indicators

workflow_steps([
    ("✅", "Setup completed"),
    ("🔄", "Running tests..."),
    ("⏸️", "Build pending"),
    ("⏸️", "Deploy pending")
])
# Output:
# Step 1: ✅ Setup completed
# Step 2: 🔄 Running tests...
# Step 3: ⏸️ Build pending
# Step 4: ⏸️ Deploy pending

Phase Indicators

phase_indicator("Phase 2/4: Implementation", 25)
# Output: 🎯 Phase 2/4: Implementation [█████                        ] 25%

Integration Patterns

1. Alfred Command Integration

# In /alfred:2-run implementation
def run_spec_implementation(spec_id):
    # Start progress tracking
    Skill("moai-streaming-ui")
    # → Display: 🚀 Starting SPEC-AUTH-001 implementation...

    for step in implementation_steps:
        # Show current step
        show_step_progress(step)
        # → Display: 🔄 Step 2/5: Writing tests...

        # Execute step
        result = execute_step(step)

        # Update status
        if result.success:
            success_step(step)
            # → Display: ✅ Step 2 completed: Tests written
        else:
            error_step(step, result.error)
            # → Display: ❌ Step 2 failed: Test syntax error

2. Long-Running Operation Wrapper

def with_progress_indicator(operation, description):
    """Wrap any operation with progress UI"""
    Skill("moai-streaming-ui")

    # Start indicator
    start_progress(description)

    try:
        result = operation()

        # Success completion
        complete_progress(description, success=True)
        return result

    except Exception as e:
        # Error completion
        complete_progress(description, success=False, error=str(e))
        raise

3. Background Task Monitoring

def monitor_background_task(task_id):
    """Monitor and display background task progress"""
    while not task_complete(task_id):
        progress = get_task_progress(task_id)

        Skill("moai-streaming-ui")
        show_progress(progress.percentage, progress.current_step)

        sleep(1)  # Update every second

    # Final status
    Skill("moai-streaming-ui")
    show_completion(task_result)

Progress Tracking Systems

1. Multi-Step Workflows

class WorkflowProgress:
    def __init__(self, steps):
        self.steps = steps
        self.current = 0

    def start(self):
        Skill("moai-streaming-ui")
        show_workflow_start(self.steps)

    def next_step(self):
        self.current += 1
        Skill("moai-streaming-ui")
        show_current_step(self.current, self.steps[self.current])

    def complete(self):
        Skill("moai-streaming-ui")
        show_workflow_complete()

# Usage
workflow = WorkflowProgress([
    "Analyze requirements",
    "Write tests",
    "Implement code",
    "Run validation",
    "Generate documentation"
])

workflow.start()
# → 🎯 Starting workflow: 5 steps planned

2. File Operations Progress

def track_file_operation(files, operation):
    """Track progress for file operations"""
    total = len(files)

    for i, file_path in enumerate(files):
        current_progress = (i + 1) / total * 100

        Skill("moai-streaming-ui")
        show_file_progress(operation, file_path, current_progress, i + 1, total)

        # Perform operation
        perform_operation(file_path)

    # Completion
    Skill("moai-streaming-ui")
    show_operation_complete(operation, total)

# Usage
track_file_operation(source_files, "Copying files")
# → 📁 Copying files: file.py (45/100) [███████████████                              ] 45%

3. API/Network Operations

def track_api_requests(requests):
    """Track progress for multiple API requests"""
    completed = 0
    total = len(requests)

    for request in requests:
        Skill("moai-streaming-ui")
        show_api_progress("Making API request", completed + 1, total)

        try:
            response = make_request(request)
            completed += 1

            Skill("moai-streaming-ui")
            show_api_success(completed, total)

        except Exception as e:
            Skill("moai-streaming-ui")
            show_api_error(str(e), completed + 1, total)

Status Display Templates

1. Operation Start

def show_operation_start(operation, details=None):
    """Display operation start message"""
    lines = [f"🚀 {operation}"]

    if details:
        lines.append(f"📋 {details}")

    lines.append("⏱️  Started at " + datetime.now().strftime("%H:%M:%S"))

    Skill("moai-streaming-ui")
    display_message("\n".join(lines))

2. Progress Update

def show_progress_update(operation, progress, current_item=None):
    """Display progress update"""
    percentage = progress.percentage
    bar = create_progress_bar(percentage)

    lines = [
        f"🔄 {operation}",
        f"📊 {bar} {percentage:.1f}%",
    ]

    if current_item:
        lines.append(f"📁 Current: {current_item}")

    if progress.eta:
        lines.append(f"⏱️  ETA: {progress.eta}")

    Skill("moai-streaming-ui")
    display_message("\n".join(lines))

3. Operation Completion

def show_operation_complete(operation, result, duration=None):
    """Display operation completion"""
    if result.success:
        lines = [
            f"✅ {operation} completed successfully"
        ]

        if result.summary:
            lines.append(f"📊 {result.summary}")

    else:
        lines = [
            f"❌ {operation} failed"
        ]

        if result.error:
            lines.append(f"🔴 Error: {result.error}")

    if duration:
        lines.append(f"⏱️  Duration: {duration}")

    lines.append(f"🏁 Finished at " + datetime.now().strftime("%H:%M:%S"))

    Skill("moai-streaming-ui")
    display_message("\n".join(lines))

Error Handling and Recovery

1. Retry Mechanisms

def show_retry_attempt(operation, attempt, max_attempts):
    """Display retry attempt information"""
    Skill("moai-streaming-ui")

    message = f"🔄 {operation} - Retry {attempt}/{max_attempts}"
    if attempt > 1:
        message += f" (previous attempts failed)"

    display_message(message)

2. Error Recovery Options

def show_recovery_options(error, options):
    """Display error recovery options to user"""
    Skill("moai-streaming-ui")

    lines = [
        f"❌ Error: {error}",
        "🔧 Recovery options:"
    ]

    for i, option in enumerate(options, 1):
        lines.append(f"   {i}. {option}")

    lines.append("❓ Choose recovery option [1-{}]".format(len(options)))

    display_message("\n".join(lines))

3. Graceful Degradation

def show_fallback_behavior(operation, fallback_reason):
    """Display fallback behavior information"""
    Skill("moai-streaming-ui")

    message = f"⚠️ {operation} - Using fallback: {fallback_reason}"
    display_message(message)

Performance Considerations

1. Update Frequency

# Don't update too frequently (avoid spam)
MIN_UPDATE_INTERVAL = 0.5  # 500ms minimum

# Throttle updates
if time_since_last_update() < MIN_UPDATE_INTERVAL:
    return  # Skip this update

2. Memory Efficiency

# Reuse UI elements
progress_bar_template = "[{█}{ }{ }]"
status_cache = {}

# Limit displayed items
MAX_DISPLAY_ITEMS = 50
if len(items) > MAX_DISPLAY_ITEMS:
    items = items[:MAX_DISPLAY_ITEMS] + [f"... and {len(items) - MAX_DISPLAY_ITEMS} more"]

3. Async Updates

# Non-blocking UI updates
async def update_progress_async(progress):
    """Update UI without blocking operation"""
    Skill("moai-streaming-ui")
    show_progress(progress)
    await asyncio.sleep(0)  # Yield control

Usage Examples

Example 1: Test Execution

def run_tests_with_progress():
    """Run tests with progress indication"""
    Skill("moai-streaming-ui")
    show_operation_start("Running test suite", "128 tests found")

    tests = get_all_tests()
    passed = 0
    failed = 0

    for i, test in enumerate(tests):
        progress = (i + 1) / len(tests) * 100

        Skill("moai-streaming-ui")
        show_progress_update("Running tests", progress, test.name)

        result = run_single_test(test)

        if result.passed:
            passed += 1
        else:
            failed += 1
            Skill("moai-streaming-ui")
            show_test_failure(test.name, result.error)

    # Final summary
    Skill("moai-streaming-ui")
    show_operation_complete("Test suite", TestResult(passed, failed))

Example 2: File Processing

def process_files_with_progress(files, operation):
    """Process files with progress tracking"""
    Skill("moai-streaming-ui")
    show_operation_start(operation, f"{len(files)} files to process")

    for i, file_path in enumerate(files):
        progress = (i + 1) / len(files) * 100

        Skill("moai-streaming-ui")
        show_file_progress(operation, file_path.name, progress, i + 1, len(files))

        try:
            process_file(file_path)
            Skill("moai-streaming-ui")
            show_file_success(file_path.name)
        except Exception as e:
            Skill("moai-streaming-ui")
            show_file_error(file_path.name, str(e))

Example 3: API Workflow

def execute_api_workflow_with_progress():
    """Execute multi-step API workflow with visual feedback"""
    steps = [
        ("Authenticate", authenticate_api),
        ("Upload data", upload_data),
        ("Process results", process_results),
        ("Download response", download_response)
    ]

    Skill("moai-streaming-ui")
    show_workflow_start([step[0] for step in steps])

    for i, (step_name, step_func) in enumerate(steps):
        Skill("moai-streaming-ui")
        show_current_step(i + 1, len(steps), step_name)

        try:
            result = step_func()
            Skill("moai-streaming-ui")
            show_step_success(step_name)
        except Exception as e:
            Skill("moai-streaming-ui")
            show_step_error(step_name, str(e))
            raise

End of Skill | Rich visual feedback for enhanced user experience during complex operations

GitHub Repository

modu-ai/moai-adk
Path: src/moai_adk/templates/.claude/skills/moai-streaming-ui
agentic-aiagentic-codingagentic-workflowclaudeclaudecodevibe-coding

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill