sentence-transformers
About
sentence-transformers is a Python framework for generating state-of-the-art sentence, text, and image embeddings. It provides over 5,000 pre-trained models for tasks like semantic search, clustering, and retrieval, supporting multilingual and domain-specific use cases. It's ideal for developers needing a cost-effective, local alternative to API-based solutions for generating embeddings in RAG systems or similarity tasks.
Quick Install
Claude Code
Recommended/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLsgit clone https://github.com/zechenzhangAGI/AI-research-SKILLs.git ~/.claude/skills/sentence-transformersCopy and paste this command in Claude Code to install this skill
Documentation
Sentence Transformers - State-of-the-Art Embeddings
Python framework for sentence and text embeddings using transformers.
When to use Sentence Transformers
Use when:
- Need high-quality embeddings for RAG
- Semantic similarity and search
- Text clustering and classification
- Multilingual embeddings (100+ languages)
- Running embeddings locally (no API)
- Cost-effective alternative to OpenAI embeddings
Metrics:
- 15,700+ GitHub stars
- 5000+ pre-trained models
- 100+ languages supported
- Based on PyTorch/Transformers
Use alternatives instead:
- OpenAI Embeddings: Need API-based, highest quality
- Instructor: Task-specific instructions
- Cohere Embed: Managed service
Quick start
Installation
pip install sentence-transformers
Basic usage
from sentence_transformers import SentenceTransformer
# Load model
model = SentenceTransformer('all-MiniLM-L6-v2')
# Generate embeddings
sentences = [
"This is an example sentence",
"Each sentence is converted to a vector"
]
embeddings = model.encode(sentences)
print(embeddings.shape) # (2, 384)
# Cosine similarity
from sentence_transformers.util import cos_sim
similarity = cos_sim(embeddings[0], embeddings[1])
print(f"Similarity: {similarity.item():.4f}")
Popular models
General purpose
# Fast, good quality (384 dim)
model = SentenceTransformer('all-MiniLM-L6-v2')
# Better quality (768 dim)
model = SentenceTransformer('all-mpnet-base-v2')
# Best quality (1024 dim, slower)
model = SentenceTransformer('all-roberta-large-v1')
Multilingual
# 50+ languages
model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
# 100+ languages
model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
Domain-specific
# Legal domain
model = SentenceTransformer('nlpaueb/legal-bert-base-uncased')
# Scientific papers
model = SentenceTransformer('allenai/specter')
# Code
model = SentenceTransformer('microsoft/codebert-base')
Semantic search
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('all-MiniLM-L6-v2')
# Corpus
corpus = [
"Python is a programming language",
"Machine learning uses algorithms",
"Neural networks are powerful"
]
# Encode corpus
corpus_embeddings = model.encode(corpus, convert_to_tensor=True)
# Query
query = "What is Python?"
query_embedding = model.encode(query, convert_to_tensor=True)
# Find most similar
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=3)
print(hits)
Similarity computation
# Cosine similarity
similarity = util.cos_sim(embedding1, embedding2)
# Dot product
similarity = util.dot_score(embedding1, embedding2)
# Pairwise cosine similarity
similarities = util.cos_sim(embeddings, embeddings)
Batch encoding
# Efficient batch processing
sentences = ["sentence 1", "sentence 2", ...] * 1000
embeddings = model.encode(
sentences,
batch_size=32,
show_progress_bar=True,
convert_to_tensor=False # or True for PyTorch tensors
)
Fine-tuning
from sentence_transformers import InputExample, losses
from torch.utils.data import DataLoader
# Training data
train_examples = [
InputExample(texts=['sentence 1', 'sentence 2'], label=0.8),
InputExample(texts=['sentence 3', 'sentence 4'], label=0.3),
]
train_dataloader = DataLoader(train_examples, batch_size=16)
# Loss function
train_loss = losses.CosineSimilarityLoss(model)
# Train
model.fit(
train_objectives=[(train_dataloader, train_loss)],
epochs=10,
warmup_steps=100
)
# Save
model.save('my-finetuned-model')
LangChain integration
from langchain_community.embeddings import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
)
# Use with vector stores
from langchain_chroma import Chroma
vectorstore = Chroma.from_documents(
documents=docs,
embedding=embeddings
)
LlamaIndex integration
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-mpnet-base-v2"
)
from llama_index.core import Settings
Settings.embed_model = embed_model
# Use in index
index = VectorStoreIndex.from_documents(documents)
Model selection guide
| Model | Dimensions | Speed | Quality | Use Case |
|---|---|---|---|---|
| all-MiniLM-L6-v2 | 384 | Fast | Good | General, prototyping |
| all-mpnet-base-v2 | 768 | Medium | Better | Production RAG |
| all-roberta-large-v1 | 1024 | Slow | Best | High accuracy needed |
| paraphrase-multilingual | 768 | Medium | Good | Multilingual |
Best practices
- Start with all-MiniLM-L6-v2 - Good baseline
- Normalize embeddings - Better for cosine similarity
- Use GPU if available - 10× faster encoding
- Batch encoding - More efficient
- Cache embeddings - Expensive to recompute
- Fine-tune for domain - Improves quality
- Test different models - Quality varies by task
- Monitor memory - Large models need more RAM
Performance
| Model | Speed (sentences/sec) | Memory | Dimension |
|---|---|---|---|
| MiniLM | ~2000 | 120MB | 384 |
| MPNet | ~600 | 420MB | 768 |
| RoBERTa | ~300 | 1.3GB | 1024 |
Resources
- GitHub: https://github.com/UKPLab/sentence-transformers ⭐ 15,700+
- Models: https://huggingface.co/sentence-transformers
- Docs: https://www.sbert.net
- License: Apache 2.0
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
