Back to Skills

sentence-transformers

zechenzhangAGI
Updated Today
27 views
62
2
62
View on GitHub
Metaai

About

sentence-transformers is a Python framework for generating state-of-the-art sentence, text, and image embeddings. It provides over 5,000 pre-trained models for tasks like semantic search, clustering, and retrieval, supporting multilingual and domain-specific use cases. It's ideal for developers needing a cost-effective, local alternative to API-based solutions for generating embeddings in RAG systems or similarity tasks.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs
Git CloneAlternative
git clone https://github.com/zechenzhangAGI/AI-research-SKILLs.git ~/.claude/skills/sentence-transformers

Copy and paste this command in Claude Code to install this skill

Documentation

Sentence Transformers - State-of-the-Art Embeddings

Python framework for sentence and text embeddings using transformers.

When to use Sentence Transformers

Use when:

  • Need high-quality embeddings for RAG
  • Semantic similarity and search
  • Text clustering and classification
  • Multilingual embeddings (100+ languages)
  • Running embeddings locally (no API)
  • Cost-effective alternative to OpenAI embeddings

Metrics:

  • 15,700+ GitHub stars
  • 5000+ pre-trained models
  • 100+ languages supported
  • Based on PyTorch/Transformers

Use alternatives instead:

  • OpenAI Embeddings: Need API-based, highest quality
  • Instructor: Task-specific instructions
  • Cohere Embed: Managed service

Quick start

Installation

pip install sentence-transformers

Basic usage

from sentence_transformers import SentenceTransformer

# Load model
model = SentenceTransformer('all-MiniLM-L6-v2')

# Generate embeddings
sentences = [
    "This is an example sentence",
    "Each sentence is converted to a vector"
]

embeddings = model.encode(sentences)
print(embeddings.shape)  # (2, 384)

# Cosine similarity
from sentence_transformers.util import cos_sim
similarity = cos_sim(embeddings[0], embeddings[1])
print(f"Similarity: {similarity.item():.4f}")

Popular models

General purpose

# Fast, good quality (384 dim)
model = SentenceTransformer('all-MiniLM-L6-v2')

# Better quality (768 dim)
model = SentenceTransformer('all-mpnet-base-v2')

# Best quality (1024 dim, slower)
model = SentenceTransformer('all-roberta-large-v1')

Multilingual

# 50+ languages
model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')

# 100+ languages
model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')

Domain-specific

# Legal domain
model = SentenceTransformer('nlpaueb/legal-bert-base-uncased')

# Scientific papers
model = SentenceTransformer('allenai/specter')

# Code
model = SentenceTransformer('microsoft/codebert-base')

Semantic search

from sentence_transformers import SentenceTransformer, util

model = SentenceTransformer('all-MiniLM-L6-v2')

# Corpus
corpus = [
    "Python is a programming language",
    "Machine learning uses algorithms",
    "Neural networks are powerful"
]

# Encode corpus
corpus_embeddings = model.encode(corpus, convert_to_tensor=True)

# Query
query = "What is Python?"
query_embedding = model.encode(query, convert_to_tensor=True)

# Find most similar
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=3)
print(hits)

Similarity computation

# Cosine similarity
similarity = util.cos_sim(embedding1, embedding2)

# Dot product
similarity = util.dot_score(embedding1, embedding2)

# Pairwise cosine similarity
similarities = util.cos_sim(embeddings, embeddings)

Batch encoding

# Efficient batch processing
sentences = ["sentence 1", "sentence 2", ...] * 1000

embeddings = model.encode(
    sentences,
    batch_size=32,
    show_progress_bar=True,
    convert_to_tensor=False  # or True for PyTorch tensors
)

Fine-tuning

from sentence_transformers import InputExample, losses
from torch.utils.data import DataLoader

# Training data
train_examples = [
    InputExample(texts=['sentence 1', 'sentence 2'], label=0.8),
    InputExample(texts=['sentence 3', 'sentence 4'], label=0.3),
]

train_dataloader = DataLoader(train_examples, batch_size=16)

# Loss function
train_loss = losses.CosineSimilarityLoss(model)

# Train
model.fit(
    train_objectives=[(train_dataloader, train_loss)],
    epochs=10,
    warmup_steps=100
)

# Save
model.save('my-finetuned-model')

LangChain integration

from langchain_community.embeddings import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-mpnet-base-v2"
)

# Use with vector stores
from langchain_chroma import Chroma

vectorstore = Chroma.from_documents(
    documents=docs,
    embedding=embeddings
)

LlamaIndex integration

from llama_index.embeddings.huggingface import HuggingFaceEmbedding

embed_model = HuggingFaceEmbedding(
    model_name="sentence-transformers/all-mpnet-base-v2"
)

from llama_index.core import Settings
Settings.embed_model = embed_model

# Use in index
index = VectorStoreIndex.from_documents(documents)

Model selection guide

ModelDimensionsSpeedQualityUse Case
all-MiniLM-L6-v2384FastGoodGeneral, prototyping
all-mpnet-base-v2768MediumBetterProduction RAG
all-roberta-large-v11024SlowBestHigh accuracy needed
paraphrase-multilingual768MediumGoodMultilingual

Best practices

  1. Start with all-MiniLM-L6-v2 - Good baseline
  2. Normalize embeddings - Better for cosine similarity
  3. Use GPU if available - 10× faster encoding
  4. Batch encoding - More efficient
  5. Cache embeddings - Expensive to recompute
  6. Fine-tune for domain - Improves quality
  7. Test different models - Quality varies by task
  8. Monitor memory - Large models need more RAM

Performance

ModelSpeed (sentences/sec)MemoryDimension
MiniLM~2000120MB384
MPNet~600420MB768
RoBERTa~3001.3GB1024

Resources

GitHub Repository

zechenzhangAGI/AI-research-SKILLs
Path: 15-rag/sentence-transformers
aiai-researchclaudeclaude-codeclaude-skillscodex

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill