Back to Skills

agentic-jujutsu

proffesor-for-testing
Updated 2 days ago
29 views
99
21
99
View on GitHub
Otherai

About

agentic-jujutsu provides quantum-resistant, self-learning version control specifically designed for multiple AI agents to modify code simultaneously without conflicts. It offers lock-free operations with automatic conflict resolution and intelligent pattern recognition. Use it when coordinating multi-agent development that requires high-speed, secure version control with self-improving capabilities.

Documentation

Agentic Jujutsu - AI Agent Version Control

Quantum-ready, self-learning version control designed for multiple AI agents working simultaneously without conflicts.

When to Use This Skill

Use agentic-jujutsu when you need:

  • ✅ Multiple AI agents modifying code simultaneously
  • ✅ Lock-free version control (23x faster than Git)
  • ✅ Self-learning AI that improves from experience
  • ✅ Quantum-resistant security for future-proof protection
  • ✅ Automatic conflict resolution (87% success rate)
  • ✅ Pattern recognition and intelligent suggestions
  • ✅ Multi-agent coordination without blocking

Quick Start

Installation

npx agentic-jujutsu

Basic Usage

const { JjWrapper } = require('agentic-jujutsu');

const jj = new JjWrapper();

// Basic operations
await jj.status();
await jj.newCommit('Add feature');
await jj.log(10);

// Self-learning trajectory
const id = jj.startTrajectory('Implement authentication');
await jj.branchCreate('feature/auth');
await jj.newCommit('Add auth');
jj.addToTrajectory();
jj.finalizeTrajectory(0.9, 'Clean implementation');

// Get AI suggestions
const suggestion = JSON.parse(jj.getSuggestion('Add logout feature'));
console.log(`Confidence: ${suggestion.confidence}`);

Core Capabilities

1. Self-Learning with ReasoningBank

Track operations, learn patterns, and get intelligent suggestions:

// Start learning trajectory
const trajectoryId = jj.startTrajectory('Deploy to production');

// Perform operations (automatically tracked)
await jj.execute(['git', 'push', 'origin', 'main']);
await jj.branchCreate('release/v1.0');
await jj.newCommit('Release v1.0');

// Record operations to trajectory
jj.addToTrajectory();

// Finalize with success score (0.0-1.0) and critique
jj.finalizeTrajectory(0.95, 'Deployment successful, no issues');

// Later: Get AI-powered suggestions for similar tasks
const suggestion = JSON.parse(jj.getSuggestion('Deploy to staging'));
console.log('AI Recommendation:', suggestion.reasoning);
console.log('Confidence:', (suggestion.confidence * 100).toFixed(1) + '%');
console.log('Expected Success:', (suggestion.expectedSuccessRate * 100).toFixed(1) + '%');

Validation (v2.3.1):

  • ✅ Tasks must be non-empty (max 10KB)
  • ✅ Success scores must be 0.0-1.0
  • ✅ Must have operations before finalizing
  • ✅ Contexts cannot be empty

2. Pattern Discovery

Automatically identify successful operation sequences:

// Get discovered patterns
const patterns = JSON.parse(jj.getPatterns());

patterns.forEach(pattern => {
    console.log(`Pattern: ${pattern.name}`);
    console.log(`  Success rate: ${(pattern.successRate * 100).toFixed(1)}%`);
    console.log(`  Used ${pattern.observationCount} times`);
    console.log(`  Operations: ${pattern.operationSequence.join(' → ')}`);
    console.log(`  Confidence: ${(pattern.confidence * 100).toFixed(1)}%`);
});

3. Learning Statistics

Track improvement over time:

const stats = JSON.parse(jj.getLearningStats());

console.log('Learning Progress:');
console.log(`  Total trajectories: ${stats.totalTrajectories}`);
console.log(`  Patterns discovered: ${stats.totalPatterns}`);
console.log(`  Average success: ${(stats.avgSuccessRate * 100).toFixed(1)}%`);
console.log(`  Improvement rate: ${(stats.improvementRate * 100).toFixed(1)}%`);
console.log(`  Prediction accuracy: ${(stats.predictionAccuracy * 100).toFixed(1)}%`);

4. Multi-Agent Coordination

Multiple agents work concurrently without conflicts:

// Agent 1: Developer
const dev = new JjWrapper();
dev.startTrajectory('Implement feature');
await dev.newCommit('Add feature X');
dev.addToTrajectory();
dev.finalizeTrajectory(0.85);

// Agent 2: Reviewer (learns from Agent 1)
const reviewer = new JjWrapper();
const suggestion = JSON.parse(reviewer.getSuggestion('Review feature X'));

if (suggestion.confidence > 0.7) {
    console.log('High confidence approach:', suggestion.reasoning);
}

// Agent 3: Tester (benefits from both)
const tester = new JjWrapper();
const similar = JSON.parse(tester.queryTrajectories('test feature', 5));
console.log(`Found ${similar.length} similar test approaches`);

5. Quantum-Resistant Security (v2.3.0+)

Fast integrity verification with quantum-resistant cryptography:

const { generateQuantumFingerprint, verifyQuantumFingerprint } = require('agentic-jujutsu');

// Generate SHA3-512 fingerprint (NIST FIPS 202)
const data = Buffer.from('commit-data');
const fingerprint = generateQuantumFingerprint(data);
console.log('Fingerprint:', fingerprint.toString('hex'));

// Verify integrity (<1ms)
const isValid = verifyQuantumFingerprint(data, fingerprint);
console.log('Valid:', isValid);

// HQC-128 encryption for trajectories
const crypto = require('crypto');
const key = crypto.randomBytes(32).toString('base64');
jj.enableEncryption(key);

6. Operation Tracking with AgentDB

Automatic tracking of all operations:

// Operations are tracked automatically
await jj.status();
await jj.newCommit('Fix bug');
await jj.rebase('main');

// Get operation statistics
const stats = JSON.parse(jj.getStats());
console.log(`Total operations: ${stats.total_operations}`);
console.log(`Success rate: ${(stats.success_rate * 100).toFixed(1)}%`);
console.log(`Avg duration: ${stats.avg_duration_ms.toFixed(2)}ms`);

// Query recent operations
const ops = jj.getOperations(10);
ops.forEach(op => {
    console.log(`${op.operationType}: ${op.command}`);
    console.log(`  Duration: ${op.durationMs}ms, Success: ${op.success}`);
});

// Get user operations (excludes snapshots)
const userOps = jj.getUserOperations(20);

Advanced Use Cases

Use Case 1: Adaptive Workflow Optimization

Learn and improve deployment workflows:

async function adaptiveDeployment(jj, environment) {
    // Get AI suggestion based on past deployments
    const suggestion = JSON.parse(jj.getSuggestion(`Deploy to ${environment}`));
    
    console.log(`Deploying with ${(suggestion.confidence * 100).toFixed(0)}% confidence`);
    console.log(`Expected duration: ${suggestion.estimatedDurationMs}ms`);
    
    // Start tracking
    jj.startTrajectory(`Deploy to ${environment}`);
    
    // Execute recommended operations
    for (const op of suggestion.recommendedOperations) {
        console.log(`Executing: ${op}`);
        await executeOperation(op);
    }
    
    jj.addToTrajectory();
    
    // Record outcome
    const success = await verifyDeployment();
    jj.finalizeTrajectory(
        success ? 0.95 : 0.5,
        success ? 'Deployment successful' : 'Issues detected'
    );
}

Use Case 2: Multi-Agent Code Review

Coordinate review across multiple agents:

async function coordinatedReview(agents) {
    const reviews = await Promise.all(agents.map(async (agent) => {
        const jj = new JjWrapper();
        
        // Start review trajectory
        jj.startTrajectory(`Review by ${agent.name}`);
        
        // Get AI suggestion for review approach
        const suggestion = JSON.parse(jj.getSuggestion('Code review'));
        
        // Perform review
        const diff = await jj.diff('@', '@-');
        const issues = await agent.analyze(diff);
        
        jj.addToTrajectory();
        jj.finalizeTrajectory(
            issues.length === 0 ? 0.9 : 0.6,
            `Found ${issues.length} issues`
        );
        
        return { agent: agent.name, issues, suggestion };
    }));
    
    // Aggregate learning from all agents
    return reviews;
}

Use Case 3: Error Pattern Detection

Learn from failures to prevent future issues:

async function smartMerge(jj, branch) {
    // Query similar merge attempts
    const similar = JSON.parse(jj.queryTrajectories(`merge ${branch}`, 10));
    
    // Analyze past failures
    const failures = similar.filter(t => t.successScore < 0.5);
    
    if (failures.length > 0) {
        console.log('⚠️ Similar merges failed in the past:');
        failures.forEach(f => {
            if (f.critique) {
                console.log(`  - ${f.critique}`);
            }
        });
    }
    
    // Get AI recommendation
    const suggestion = JSON.parse(jj.getSuggestion(`merge ${branch}`));
    
    if (suggestion.confidence < 0.7) {
        console.log('⚠️ Low confidence. Recommended steps:');
        suggestion.recommendedOperations.forEach(op => console.log(`  - ${op}`));
    }
    
    // Execute merge with tracking
    jj.startTrajectory(`Merge ${branch}`);
    try {
        await jj.execute(['merge', branch]);
        jj.addToTrajectory();
        jj.finalizeTrajectory(0.9, 'Merge successful');
    } catch (err) {
        jj.addToTrajectory();
        jj.finalizeTrajectory(0.3, `Merge failed: ${err.message}`);
        throw err;
    }
}

Use Case 4: Continuous Learning Loop

Implement a self-improving agent:

class SelfImprovingAgent {
    constructor() {
        this.jj = new JjWrapper();
    }
    
    async performTask(taskDescription) {
        // Get AI suggestion
        const suggestion = JSON.parse(this.jj.getSuggestion(taskDescription));
        
        console.log(`Task: ${taskDescription}`);
        console.log(`AI Confidence: ${(suggestion.confidence * 100).toFixed(1)}%`);
        console.log(`Expected Success: ${(suggestion.expectedSuccessRate * 100).toFixed(1)}%`);
        
        // Start trajectory
        this.jj.startTrajectory(taskDescription);
        
        // Execute with recommended approach
        const startTime = Date.now();
        let success = false;
        
        try {
            for (const op of suggestion.recommendedOperations) {
                await this.execute(op);
            }
            success = true;
        } catch (err) {
            console.error('Task failed:', err.message);
        }
        
        const duration = Date.now() - startTime;
        
        // Record learning
        this.jj.addToTrajectory();
        this.jj.finalizeTrajectory(
            success ? 0.9 : 0.4,
            success 
                ? `Completed in ${duration}ms using ${suggestion.recommendedOperations.length} operations`
                : `Failed after ${duration}ms`
        );
        
        // Check improvement
        const stats = JSON.parse(this.jj.getLearningStats());
        console.log(`Improvement rate: ${(stats.improvementRate * 100).toFixed(1)}%`);
        
        return success;
    }
    
    async execute(operation) {
        // Execute operation logic
    }
}

// Usage
const agent = new SelfImprovingAgent();

// Agent improves over time
for (let i = 1; i <= 10; i++) {
    console.log(`\n--- Attempt ${i} ---`);
    await agent.performTask('Deploy application');
}

API Reference

Core Methods

MethodDescriptionReturns
new JjWrapper()Create wrapper instanceJjWrapper
status()Get repository statusPromise<JjResult>
newCommit(msg)Create new commitPromise<JjResult>
log(limit)Show commit historyPromise<JjCommit[]>
diff(from, to)Show differencesPromise<JjDiff>
branchCreate(name, rev?)Create branchPromise<JjResult>
rebase(source, dest)Rebase commitsPromise<JjResult>

ReasoningBank Methods

MethodDescriptionReturns
startTrajectory(task)Begin learning trajectorystring (trajectory ID)
addToTrajectory()Add recent operationsvoid
finalizeTrajectory(score, critique?)Complete trajectory (score: 0.0-1.0)void
getSuggestion(task)Get AI recommendationJSON: DecisionSuggestion
getLearningStats()Get learning metricsJSON: LearningStats
getPatterns()Get discovered patternsJSON: Pattern[]
queryTrajectories(task, limit)Find similar trajectoriesJSON: Trajectory[]
resetLearning()Clear learned datavoid

AgentDB Methods

MethodDescriptionReturns
getStats()Get operation statisticsJSON: Stats
getOperations(limit)Get recent operationsJjOperation[]
getUserOperations(limit)Get user operations onlyJjOperation[]
clearLog()Clear operation logvoid

Quantum Security Methods (v2.3.0+)

MethodDescriptionReturns
generateQuantumFingerprint(data)Generate SHA3-512 fingerprintBuffer (64 bytes)
verifyQuantumFingerprint(data, fp)Verify fingerprintboolean
enableEncryption(key, pubKey?)Enable HQC-128 encryptionvoid
disableEncryption()Disable encryptionvoid
isEncryptionEnabled()Check encryption statusboolean

Performance Characteristics

MetricGitAgentic Jujutsu
Concurrent commits15 ops/s350 ops/s (23x)
Context switching500-1000ms50-100ms (10x)
Conflict resolution30-40% auto87% auto (2.5x)
Lock waiting50 min/day0 min (∞)
Quantum fingerprintsN/A<1ms

Best Practices

1. Trajectory Management

// ✅ Good: Meaningful task descriptions
jj.startTrajectory('Implement user authentication with JWT');

// ❌ Bad: Vague descriptions
jj.startTrajectory('fix stuff');

// ✅ Good: Honest success scores
jj.finalizeTrajectory(0.7, 'Works but needs refactoring');

// ❌ Bad: Always 1.0
jj.finalizeTrajectory(1.0, 'Perfect!'); // Prevents learning

2. Pattern Recognition

// ✅ Good: Let patterns emerge naturally
for (let i = 0; i < 10; i++) {
    jj.startTrajectory('Deploy feature');
    await deploy();
    jj.addToTrajectory();
    jj.finalizeTrajectory(wasSuccessful ? 0.9 : 0.5);
}

// ❌ Bad: Not recording outcomes
await deploy(); // No learning

3. Multi-Agent Coordination

// ✅ Good: Concurrent operations
const agents = ['agent1', 'agent2', 'agent3'];
await Promise.all(agents.map(async (agent) => {
    const jj = new JjWrapper();
    // Each agent works independently
    await jj.newCommit(`Changes by ${agent}`);
}));

// ❌ Bad: Sequential with locks
for (const agent of agents) {
    await agent.waitForLock(); // Not needed!
    await agent.commit();
}

4. Error Handling

// ✅ Good: Record failures with details
try {
    await jj.execute(['complex-operation']);
    jj.finalizeTrajectory(0.9);
} catch (err) {
    jj.finalizeTrajectory(0.3, `Failed: ${err.message}. Root cause: ...`);
}

// ❌ Bad: Silent failures
try {
    await jj.execute(['operation']);
} catch (err) {
    // No learning from failure
}

Validation Rules (v2.3.1+)

Task Description

  • ✅ Cannot be empty or whitespace-only
  • ✅ Maximum length: 10,000 bytes
  • ✅ Automatically trimmed

Success Score

  • ✅ Must be finite (not NaN or Infinity)
  • ✅ Must be between 0.0 and 1.0 (inclusive)

Operations

  • ✅ Must have at least one operation before finalizing

Context

  • ✅ Cannot be empty
  • ✅ Keys cannot be empty or whitespace-only
  • ✅ Keys max 1,000 bytes, values max 10,000 bytes

Troubleshooting

Issue: Low Confidence Suggestions

const suggestion = JSON.parse(jj.getSuggestion('new task'));

if (suggestion.confidence < 0.5) {
    // Not enough data - check learning stats
    const stats = JSON.parse(jj.getLearningStats());
    console.log(`Need more data. Current trajectories: ${stats.totalTrajectories}`);
    
    // Recommend: Record 5-10 trajectories first
}

Issue: Validation Errors

try {
    jj.startTrajectory(''); // Empty task
} catch (err) {
    if (err.message.includes('Validation error')) {
        console.log('Invalid input:', err.message);
        // Use non-empty, meaningful task description
    }
}

try {
    jj.finalizeTrajectory(1.5); // Score > 1.0
} catch (err) {
    // Use score between 0.0 and 1.0
    jj.finalizeTrajectory(Math.max(0, Math.min(1, score)));
}

Issue: No Patterns Discovered

const patterns = JSON.parse(jj.getPatterns());

if (patterns.length === 0) {
    // Need more trajectories with >70% success
    // Record at least 3-5 successful trajectories
}

Examples

Example 1: Simple Learning Workflow

const { JjWrapper } = require('agentic-jujutsu');

async function learnFromWork() {
    const jj = new JjWrapper();
    
    // Start tracking
    jj.startTrajectory('Add user profile feature');
    
    // Do work
    await jj.branchCreate('feature/user-profile');
    await jj.newCommit('Add user profile model');
    await jj.newCommit('Add profile API endpoints');
    await jj.newCommit('Add profile UI');
    
    // Record operations
    jj.addToTrajectory();
    
    // Finalize with result
    jj.finalizeTrajectory(0.85, 'Feature complete, minor styling issues remain');
    
    // Next time, get suggestions
    const suggestion = JSON.parse(jj.getSuggestion('Add settings page'));
    console.log('AI suggests:', suggestion.reasoning);
}

Example 2: Multi-Agent Swarm

async function agentSwarm(taskList) {
    const agents = taskList.map((task, i) => ({
        name: `agent-${i}`,
        jj: new JjWrapper(),
        task
    }));
    
    // All agents work concurrently (no conflicts!)
    const results = await Promise.all(agents.map(async (agent) => {
        agent.jj.startTrajectory(agent.task);
        
        // Get AI suggestion
        const suggestion = JSON.parse(agent.jj.getSuggestion(agent.task));
        
        // Execute task
        const success = await executeTask(agent, suggestion);
        
        agent.jj.addToTrajectory();
        agent.jj.finalizeTrajectory(success ? 0.9 : 0.5);
        
        return { agent: agent.name, success };
    }));
    
    console.log('Results:', results);
}

Related Documentation

Version History

  • v2.3.2 - Documentation updates
  • v2.3.1 - Validation fixes for ReasoningBank
  • v2.3.0 - Quantum-resistant security with @qudag/napi-core
  • v2.1.0 - Self-learning AI with ReasoningBank
  • v2.0.0 - Zero-dependency installation with embedded jj binary

Status: ✅ Production Ready License: MIT Maintained: Active

Quick Install

/plugin add https://github.com/proffesor-for-testing/agentic-qe/tree/main/agentic-jujutsu

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

proffesor-for-testing/agentic-qe
Path: .claude/skills/agentic-jujutsu
agenticqeagenticsfoundationagentsquality-engineering

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill