case-study-writer
About
This skill helps developers create case study blog posts for sharing AI/automation project results internally. It interactively gathers project details (problem, solution, outcome) and structures them into a ready-to-publish markdown format. Use it after completing a project to document and communicate the implementation's impact within your organization.
Documentation
사례 게시글 작성 스킬
목적
AI/자동화(AX) 프로젝트 완료 후 사내 공유를 위한 사례 게시글을 작성합니다.
동작 방식
- 프로젝트 정보 수집 (문제, 해결책, 결과)
- 구조화된 사례 게시글 작성
- 사내 톤앤매너에 맞게 정리
입력
사용자에게 다음 정보를 질문합니다:
-
필수
- 프로젝트명
- 해결하려던 문제
- 적용한 AI/자동화 방법
- 결과 및 효과
-
선택
- 소요 시간
- 사용한 도구/기술
- 배운 점/팁
출력 형식
# [프로젝트명] 사례 공유
## 배경
기존에 어떤 문제가 있었는지...
## 해결 방법
어떤 AI/자동화를 적용했는지...
## 결과
적용 후 어떤 효과가 있었는지...
## 배운 점
다른 분들께 공유하고 싶은 팁...
워크플로우
/case-study-writer실행- 대화형으로 정보 수집
- 초안 작성 및 검토
- 수정 요청 반영
- 최종 게시글 완성
예시 대화
사용자: /case-study-writer
AI: 사례 게시글을 작성해드리겠습니다. 몇 가지 질문드릴게요.
1. 프로젝트명이 무엇인가요?
> 주간보고 자동화
2. 기존에 어떤 문제가 있었나요?
> 매주 각 팀의 보고를 취합하는데 2시간씩 걸렸어요
3. 어떤 AI/자동화를 적용했나요?
> Claude로 슬랙 메시지를 자동 요약하는 스킬 만들었어요
4. 결과가 어땠나요?
> 2시간 -> 10분으로 단축됐어요
[초안 작성...]
Quick Install
/plugin add https://github.com/chat-prompt/gpters-ai-toolkit/tree/main/case-study-writerCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
