moai-baas-vercel-ext
About
This Claude Skill provides enterprise-grade Vercel Edge Platform expertise for deploying scalable web applications. It offers AI-powered deployment automation, Context7 integration, and intelligent edge orchestration capabilities. Use this skill when working with Vercel, Next.js, or serverless architectures to streamline production deployments.
Quick Install
Claude Code
Recommended/plugin add https://github.com/modu-ai/moai-adkgit clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-baas-vercel-extCopy and paste this command in Claude Code to install this skill
Documentation
Enterprise Vercel Edge Platform Expert v4.0.0
Skill Metadata
| Field | Value |
|---|---|
| Skill Name | moai-baas-vercel-ext |
| Version | 4.0.0 (2025-11-13) |
| Tier | Enterprise Edge Platform Expert |
| AI-Powered | β Context7 Integration, Intelligent Architecture |
| Auto-load | On demand when Vercel keywords detected |
What It Does
Enterprise Vercel Edge Platform expert with AI-powered modern deployment, Context7 integration, and intelligent edge orchestration for scalable web applications.
Revolutionary v4.0.0 capabilities:
- π€ AI-Powered Vercel Architecture using Context7 MCP for latest edge patterns
- π Intelligent Edge Deployment with automated optimization and scaling
- π Advanced Next.js Integration with AI-driven performance optimization
- π Enterprise Edge Security with zero-configuration CDN and security
- π Predictive Performance Analytics with usage forecasting and optimization
When to Use
Automatic triggers:
- Vercel deployment architecture and edge computing discussions
- Next.js optimization and performance enhancement planning
- Global CDN configuration and edge strategy development
- Modern web application deployment and scaling
Manual invocation:
- Designing enterprise Vercel architectures with optimal edge patterns
- Implementing Next.js applications with advanced optimization
- Planning global deployment strategies with Vercel Edge
- Optimizing application performance and user experience
Quick Reference (Level 1)
Vercel Platform Ecosystem (November 2025)
Core Platform Features
- Edge Functions: Serverless edge computing with 0ms cold starts
- Global CDN: Edge deployment across 280+ cities worldwide
- Next.js Optimization: Automatic optimization for Next.js applications
- Serverless Deployment: Zero-configuration deployment and scaling
- Analytics: Real-time performance analytics and user insights
Latest Features (November 2025)
- Next.js 16: Latest version with stable Turbopack bundler
- Cache Components: Partial Pre-Rendering with intelligent caching
- Edge Runtime: Improved Node.js compatibility and performance
- Enhanced Routing: Optimized navigation and routing performance
- Improved Caching: Advanced caching APIs with updateTag, refresh, revalidateTag
Performance Characteristics
- Edge Deployment: P95 < 50ms worldwide latency
- Cold Starts: Near-instantaneous edge function execution
- Global Distribution: Automatic deployment to edge locations
- Scalability: Auto-scaling to millions of requests per second
- Cache Hit Ratio: Industry-leading cache performance
Integration Ecosystem
- Git Integration: Seamless GitHub, GitLab, Bitbucket integration
- Database Integrations: Vercel Postgres, PlanetScale, Supabase
- CMS Integrations: Contentful, Strapi, Sanity, etc.
- Analytics: Vercel Analytics, Google Analytics 4 integration
- Monitoring: Real-time logs, error tracking, performance monitoring
Core Implementation (Level 2)
Vercel Architecture Intelligence
# AI-powered Vercel architecture optimization with Context7
class VercelArchitectOptimizer:
def __init__(self):
self.context7_client = Context7Client()
self.edge_analyzer = EdgeAnalyzer()
self.nextjs_optimizer = NextJSOptimizer()
async def design_optimal_vercel_architecture(self,
requirements: ApplicationRequirements) -> VercelArchitecture:
"""Design optimal Vercel architecture using AI analysis."""
# Get latest Vercel and Next.js documentation via Context7
vercel_docs = await self.context7_client.get_library_docs(
context7_library_id='/vercel/docs',
topic="edge deployment next.js optimization caching 2025",
tokens=3000
)
nextjs_docs = await self.context7_client.get_library_docs(
context7_library_id='/nextjs/docs',
topic="app router server components performance 2025",
tokens=2000
)
# Optimize edge deployment strategy
edge_strategy = self.edge_analyzer.optimize_edge_deployment(
requirements.global_needs,
requirements.performance_requirements,
vercel_docs
)
# Optimize Next.js configuration
nextjs_optimization = self.nextjs_optimizer.optimize_configuration(
requirements.nextjs_features,
requirements.user_experience,
nextjs_docs
)
return VercelArchitecture(
edge_configuration=edge_strategy,
nextjs_setup=nextjs_optimization,
caching_strategy=self._design_caching_strategy(requirements),
deployment_pipeline=self._configure_deployment_pipeline(requirements),
monitoring_setup=self._setup_monitoring(),
integration_framework=self._design_integration_framework(requirements)
)
Advanced Vercel Implementation
// Enterprise Vercel implementation with TypeScript
import { NextApiRequest, NextApiResponse } from 'next';
import { VercelRequest, VercelResponse } from '@vercel/node';
interface VercelConfig {
regions: string[];
functions: Record<string, FunctionConfig>;
rewrites: RewriteRule[];
redirects: RedirectRule[];
headers: HeaderRule[];
}
export class EnterpriseVercelManager {
private config: VercelConfig;
private analytics: VercelAnalytics;
private monitoring: VercelMonitoring;
constructor(config: Partial<VercelConfig> = {}) {
this.config = {
regions: [
'iad1', // Washington, D.C.
'hnd1', // San Jose
'pdx1', // Portland
'sfo1', // San Francisco
'fra1', // Frankfurt
'arn1', // Amsterdam
'lhr1', // London
'cdg1', // Paris
],
functions: {},
rewrites: [],
redirects: [],
headers: [],
...config,
};
this.analytics = new VercelAnalytics();
this.monitoring = new VercelMonitoring();
}
// Configure edge functions with advanced routing
configureEdgeFunctions(): VercelConfig['functions'] {
return {
'api/users/[id]': {
runtime: 'edge',
regions: this.config.regions,
maxDuration: 30, // seconds
memory: 512, // MB
},
'api/analytics/collect': {
runtime: 'edge',
regions: ['iad1', 'hnd1', 'fra1'], // Strategic regions
maxDuration: 10,
memory: 256,
},
'api/generate-pdf': {
runtime: 'nodejs18.x',
maxDuration: 60,
memory: 1024,
},
};
}
// Advanced caching configuration
configureCaching(): CacheConfig {
return {
rules: [
{
source: '/api/(.*)',
headers: {
'Cache-Control': 's-maxage=60, stale-while-revalidate=300',
'Vercel-CDN-Cache-Control': 'max-age=3600',
},
},
{
source: '/_next/static/(.*)',
headers: {
'Cache-Control': 'public, max-age=31536000, immutable',
},
},
{
source: '/images/(.*)',
headers: {
'Cache-Control': 'public, max-age=86400',
},
},
],
revalidate: {
'/api/products': 3600, // 1 hour
'/api/users': 60, // 1 minute
'/blog/(.*)': 86400, // 24 hours
},
};
}
// Edge function with advanced features
async handleEdgeRequest(request: VercelRequest): Promise<VercelResponse> {
try {
const url = new URL(request.url);
// Security headers
const securityHeaders = {
'X-Content-Type-Options': 'nosniff',
'X-Frame-Options': 'DENY',
'X-XSS-Protection': '1; mode=block',
'Referrer-Policy': 'strict-origin-when-cross-origin',
'Permissions-Policy': 'camera=(), microphone=(), geolocation=()',
};
// CORS configuration
const corsHeaders = this.configureCORS(request);
// Rate limiting
const rateLimitResult = await this.checkRateLimit(request);
if (!rateLimitResult.allowed) {
return new Response('Rate limit exceeded', {
status: 429,
headers: {
...securityHeaders,
'Retry-After': rateLimitResult.retryAfter.toString(),
},
});
}
// Geographic routing
const region = this.getOptimalRegion(request);
// Route to appropriate handler
if (url.pathname.startsWith('/api/')) {
return await this.handleAPIRequest(request, region);
}
// Static file serving with optimization
if (this.isStaticFile(url.pathname)) {
return await this.serveStaticFile(url.pathname);
}
// SPA fallback
return await this.serveSPA(request);
} catch (error) {
console.error('Edge request error:', error);
return new Response('Internal Server Error', { status: 500 });
}
}
private configureCORS(request: VercelRequest): Record<string, string> {
const origin = request.headers.get('origin');
const allowedOrigins = [
'https://yourdomain.com',
'https://www.yourdomain.com',
'https://app.yourdomain.com',
];
if (allowedOrigins.includes(origin || '')) {
return {
'Access-Control-Allow-Origin': origin!,
'Access-Control-Allow-Methods': 'GET, POST, PUT, DELETE, OPTIONS',
'Access-Control-Allow-Headers': 'Content-Type, Authorization',
'Access-Control-Allow-Credentials': 'true',
};
}
return {};
}
private async checkRateLimit(request: VercelRequest): Promise<RateLimitResult> {
const clientIP = request.headers.get('x-forwarded-for') ||
request.headers.get('x-real-ip') ||
'unknown';
// Implement sliding window rate limiting
const key = `rate_limit:${clientIP}`;
const window = 60000; // 1 minute
const limit = 100; // requests per minute
// In production, use Redis or similar distributed cache
const current = await this.getRateLimitCount(key, window);
if (current >= limit) {
return {
allowed: false,
retryAfter: Math.ceil(window / 1000),
};
}
await this.incrementRateLimitCount(key);
return { allowed: true };
}
private getOptimalRegion(request: VercelRequest): string {
// Geographic routing based on client location
const country = request.headers.get('x-vercel-ip-country');
const regionMap: Record<string, string> = {
'US': 'iad1', // East Coast US
'CA': 'hnd1', // West Coast US
'GB': 'lhr1', // United Kingdom
'DE': 'fra1', // Germany
'FR': 'cdg1', // France
'NL': 'arn1', // Netherlands
};
return regionMap[country || 'US'] || 'iad1';
}
private async handleAPIRequest(
request: VercelRequest,
region: string
): Promise<VercelResponse> {
const url = new URL(request.url);
const pathParts = url.pathname.split('/').filter(Boolean);
// Route to appropriate API handler
if (pathParts[0] === 'api' && pathParts[1] === 'users') {
return await this.handleUsersAPI(request, pathParts.slice(2), region);
}
if (pathParts[0] === 'api' && pathParts[1] === 'analytics') {
return await this.handleAnalyticsAPI(request, pathParts.slice(2), region);
}
return new Response('API endpoint not found', { status: 404 });
}
private async handleUsersAPI(
request: VercelRequest,
pathParts: string[],
region: string
): Promise<VercelResponse> {
const userId = pathParts[0];
if (!userId) {
return new Response('User ID required', { status: 400 });
}
try {
// Fetch user data from database
const userData = await this.fetchUserData(userId);
if (!userData) {
return new Response('User not found', { status: 404 });
}
// Return user data with proper headers
return new Response(JSON.stringify(userData), {
status: 200,
headers: {
'Content-Type': 'application/json',
'Cache-Control': 's-maxage=60, stale-while-revalidate=300',
'X-Region': region,
},
});
} catch (error) {
console.error('Users API error:', error);
return new Response('Internal Server Error', { status: 500 });
}
}
private async fetchUserData(userId: string): Promise<UserData | null> {
// Implement user data fetching from your database
// This would integrate with your database of choice
return null;
}
}
// Advanced Next.js configuration with Vercel optimization
const nextConfig = {
// Enable experimental features
experimental: {
optimizeCss: true,
optimizePackageImports: ['lucide-react', '@radix-ui/react-icons'],
turbo: {
rules: {
'*.svg': {
loaders: ['@svgr/webpack'],
as: '*.js',
},
},
},
},
// Image optimization
images: {
domains: ['yourdomain.com', 'cdn.yourdomain.com'],
formats: ['image/webp', 'image/avif'],
deviceSizes: [640, 750, 828, 1080, 1200, 1920, 2048, 3840],
imageSizes: [16, 32, 48, 64, 96, 128, 256, 384],
},
// Compiler optimization
compiler: {
removeConsole: process.env.NODE_ENV === 'production',
},
// Webpack configuration
webpack: (config, { dev, isServer }) => {
// Custom webpack configuration
if (!dev && !isServer) {
Object.assign(config.resolve.alias, {
'react': 'preact/compat',
'react-dom': 'preact/compat',
});
}
return config;
},
// Redirects and rewrites
async redirects() {
return [
{
source: '/home',
destination: '/',
permanent: true,
},
{
source: '/docs/:path*',
destination: 'https://docs.yourdomain.com/:path*',
permanent: true,
},
];
},
async rewrites() {
return [
{
source: '/api/analytics/:path*',
destination: '/api/analytics/:path*',
},
];
},
// Headers
async headers() {
return [
{
source: '/api/:path*',
headers: [
{
key: 'Cache-Control',
value: 's-maxage=60, stale-while-revalidate=300',
},
{
key: 'X-Frame-Options',
value: 'DENY',
},
{
key: 'X-Content-Type-Options',
value: 'nosniff',
},
],
},
{
source: '/(.*)',
headers: [
{
key: 'X-DNS-Prefetch-Control',
value: 'on',
},
],
},
];
},
};
// Analytics integration with Vercel
export class VercelAnalytics {
private collectEndpoint: string = '/api/analytics/collect';
async trackEvent(event: AnalyticsEvent): Promise<void> {
try {
await fetch(this.collectEndpoint, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
...event,
timestamp: new Date().toISOString(),
userAgent: navigator.userAgent,
url: window.location.href,
}),
});
} catch (error) {
console.error('Analytics tracking error:', error);
}
}
async trackPageView(page: string, title: string): Promise<void> {
await this.trackEvent({
name: 'page_view',
data: {
page,
title,
referrer: document.referrer,
},
});
}
async trackUserAction(action: string, data: Record<string, any>): Promise<void> {
await this.trackEvent({
name: 'user_action',
data: {
action,
...data,
},
});
}
async trackPerformance(metric: string, value: number): Promise<void> {
await this.trackEvent({
name: 'performance',
data: {
metric,
value,
connectionType: (navigator as any).connection?.effectiveType,
},
});
}
}
// Performance monitoring
export class VercelMonitoring {
private vitals: WebVitals = {};
recordVital(name: string, value: number): void {
this.vitals[name] = value;
// Send to analytics if value exceeds threshold
const thresholds: Record<string, number> = {
LCP: 2500, // Largest Contentful Paint
FID: 100, // First Input Delay
CLS: 0.1, // Cumulative Layout Shift
FCP: 1800, // First Contentful Paint
TTFB: 800, // Time to First Byte
};
if (value > thresholds[name]) {
// Send performance alert
this.sendPerformanceAlert(name, value, thresholds[name]);
}
}
private async sendPerformanceAlert(
metric: string,
value: number,
threshold: number
): Promise<void> {
try {
await fetch('/api/monitoring/performance', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
metric,
value,
threshold,
url: window.location.href,
timestamp: new Date().toISOString(),
userAgent: navigator.userAgent,
}),
});
} catch (error) {
console.error('Performance monitoring error:', error);
}
}
getVitals(): WebVitals {
return { ...this.vitals };
}
}
// Types
interface VercelConfig {
regions: string[];
functions: Record<string, FunctionConfig>;
rewrites: RewriteRule[];
redirects: RedirectRule[];
headers: HeaderRule[];
}
interface FunctionConfig {
runtime: 'edge' | 'nodejs18.x';
regions?: string[];
maxDuration: number;
memory: number;
}
interface CacheConfig {
rules: CacheRule[];
revalidate: Record<string, number>;
}
interface CacheRule {
source: string;
headers: Record<string, string>;
}
interface RewriteRule {
source: string;
destination: string;
}
interface RedirectRule {
source: string;
destination: string;
permanent: boolean;
}
interface HeaderRule {
source: string;
headers: Array<{
key: string;
value: string;
}>;
}
interface RateLimitResult {
allowed: boolean;
retryAfter?: number;
}
interface UserData {
id: string;
email: string;
name: string;
preferences: Record<string, any>;
lastActive: Date;
}
interface AnalyticsEvent {
name: string;
data: Record<string, any>;
}
interface WebVitals {
LCP?: number;
FID?: number;
CLS?: number;
FCP?: number;
TTFB?: number;
}
Edge Functions with Advanced Features
# Advanced Edge Functions for Vercel with Python
from firebase_functions import https_fn
from firebase_admin import firestore
import json
import time
import hashlib
from datetime import datetime, timedelta
# Advanced edge function with caching
@https_fn.on_request()
def cached_api_request(request: https_fn.Request) -> https_fn.Response:
"""Handle API requests with intelligent caching."""
try:
# Parse request
path = request.path
method = request.method
# Generate cache key
cache_key = generate_cache_key(path, method, request.args.to_dict())
# Check cache (in production, use Redis or similar)
cached_response = get_cached_response(cache_key)
if cached_response:
return cached_response
# Process request
if path.startswith('/api/users/'):
response = process_users_request(request)
elif path.startswith('/api/analytics/'):
response = process_analytics_request(request)
else:
response = https_fn.Response(
json.dumps({"error": "Endpoint not found"}),
status=404,
mimetype="application/json"
)
# Cache response for future requests
if response.status_code == 200:
cache_response(cache_key, response)
return response
except Exception as e:
return https_fn.Response(
json.dumps({"error": str(e)}),
status=500,
mimetype="application/json"
)
def generate_cache_key(path: str, method: str, params: dict) -> str:
"""Generate cache key for request."""
key_data = f"{method}:{path}:{json.dumps(sorted(params.items()))}"
return hashlib.md5(key_data.encode()).hexdigest()
def get_cached_response(cache_key: str):
"""Get cached response (simplified version)."""
# In production, implement Redis or similar distributed cache
return None
def cache_response(cache_key: str, response: https_fn.Response):
"""Cache response for future use."""
# In production, implement Redis or similar distributed cache
pass
# A/B testing edge function
@https_fn.on_request()
def ab_testing(request: https_fn.Request) -> https_fn.Response:
"""Handle A/B testing for different feature variants."""
try:
# Get user identifier
user_id = request.args.get('user_id')
if not user_id:
return https_fn.Response(
json.dumps({"error": "User ID required"}),
status=400,
mimetype="application/json"
)
# Determine A/B test variant
variant = determine_ab_variant(user_id, request.path)
# Get experiment configuration
db = firestore.client()
experiment_doc = db.collection('ab_tests').document(request.path).get()
if not experiment_doc.exists:
return https_fn.Response(
json.dumps({"error": "Experiment not found"}),
status=404,
mimetype="application/json"
)
experiment = experiment_doc.to_dict()
variant_config = experiment['variants'].get(variant)
if not variant_config:
# Fallback to control variant
variant_config = experiment['variants']['control']
# Record experiment participation
db.collection('ab_test_participants').document(user_id).set({
'experiment': request.path,
'variant': variant,
'timestamp': datetime.utcnow(),
'user_agent': request.headers.get('User-Agent'),
})
# Modify response based on variant
if request.path == '/api/homepage':
return handle_homepage_variant(variant_config, variant)
elif request.path == '/api/pricing':
return handle_pricing_variant(variant_config, variant)
else:
return https_fn.Response(
json.dumps({"variant": variant, "config": variant_config}),
status=200,
mimetype="application/json"
)
except Exception as e:
return https_fn.Response(
json.dumps({"error": str(e)}),
status=500,
mimetype="application/json"
)
def determine_ab_variant(user_id: str, experiment: str) -> str:
"""Determine A/B test variant based on user ID."""
# Use consistent hashing to assign variants
hash_value = int(hashlib.md5(f"{user_id}:{experiment}".encode()).hexdigest(), 16)
# Assign variants based on hash range
if hash_value % 100 < 50:
return 'control'
else:
return 'variant_a'
def handle_homepage_variant(config: dict, variant: str) -> https_fn.Response:
"""Handle homepage A/B test variant."""
response_data = {
'variant': variant,
'title': config.get('title', 'Welcome'),
'hero_text': config.get('hero_text', 'Discover our amazing features'),
'cta_text': config.get('cta_text', 'Get Started'),
'features': config.get('features', [])
}
return https_fn.Response(
json.dumps(response_data),
status=200,
headers={
'X-AB-Variant': variant,
'Cache-Control': 'no-cache', # Don't cache A/B test responses
},
mimetype="application/json"
)
# Geolocation-based content personalization
@https_fn.on_request()
def geo_personalization(request: https_fn.Request) -> https_fn.Response:
"""Personalize content based on user geolocation."""
try:
# Get geolocation from request headers
country = request.headers.get('x-vercel-ip-country')
region = request.headers.get('x-vercel-ip-region')
city = request.headers.get('x-vercel-ip-city')
# Get personalized content
content = get_geo_personalized_content(country, region, city)
response_data = {
'location': {
'country': country,
'region': region,
'city': city,
},
'personalized_content': content,
'timestamp': datetime.utcnow().isoformat(),
}
return https_fn.Response(
json.dumps(response_data),
status=200,
mimetype="application/json"
)
except Exception as e:
return https_fn.Response(
json.dumps({"error": str(e)}),
status=500,
mimetype="application/json"
)
def get_geo_personalized_content(country: str, region: str, city: str) -> dict:
"""Get personalized content based on geolocation."""
# Content personalization logic
if country == 'US':
return {
'currency': 'USD',
'language': 'en',
'promotions': ['free_shipping', 'local_deals'],
'shipping_options': ['standard', 'express', 'overnight'],
}
elif country == 'GB':
return {
'currency': 'GBP',
'language': 'en',
'promotions': ['free_shipping_uk', 'brexit_deals'],
'shipping_options': ['standard_uk', 'express_uk'],
}
elif country == 'DE':
return {
'currency': 'EUR',
'language': 'de',
'promotions': ['free_shipping_de', 'eu_deals'],
'shipping_options': ['standard_eu', 'express_eu'],
}
else:
return {
'currency': 'USD',
'language': 'en',
'promotions': ['international_shipping'],
'shipping_options': ['standard_international'],
}
Reference & Integration (Level 4)
API Reference
Core Vercel Operations
configure_edge_functions()- Configure edge functions with regions and runtimeconfigure_caching()- Set up advanced caching rules and revalidationhandle_edge_request(request)- Process edge requests with routing and securitytrack_event(event)- Analytics tracking for user behaviorrecord_vital(metric, value)- Performance vitals monitoring
Context7 Integration
get_latest_vercel_documentation()- Vercel docs via Context7analyze_edge_patterns()- Edge computing patterns via Context7optimize_nextjs_configuration()- Next.js optimization via Context7
Best Practices (November 2025)
DO
- Use Edge Functions for high-performance, low-latency operations
- Implement proper caching strategies with revalidation
- Configure geographically distributed deployment
- Use Next.js 16 with App Router for optimal performance
- Implement proper security headers and CORS configuration
- Monitor performance with Vercel Analytics
- Use image optimization with WebP/AVIF formats
- Implement proper error handling and logging
DON'T
- Skip edge function optimization for global applications
- Ignore caching strategies and revalidation
- Forget to implement proper security headers
- Skip performance monitoring and optimization
- Use outdated Next.js patterns and configurations
- Forget to configure proper regions for edge deployment
- Skip image optimization and CDN configuration
- Ignore analytics and user behavior tracking
Works Well With
moai-baas-foundation(Enterprise BaaS architecture)moai-domain-frontend(Frontend optimization)moai-essentials-perf(Performance optimization)moai-security-api(API security implementation)moai-baas-cloudflare-ext(Edge computing comparison)moai-domain-backend(Backend API optimization)moai-foundation-trust(Security and compliance)moai-baas-railway-ext(Alternative deployment platform)
Changelog
- v4.0.0 (2025-11-13): Complete Enterprise v4.0 rewrite with 40% content reduction, 4-layer Progressive Disclosure structure, Context7 integration, November 2025 Vercel platform updates, and advanced edge optimization
- v2.0.0 (2025-11-11): Complete metadata structure, Vercel patterns, edge optimization
- v1.0.0 (2025-11-11): Initial Vercel edge platform
End of Skill | Updated 2025-11-13
Vercel Platform Integration
Edge Computing Features
- Global deployment across 280+ cities
- Near-instantaneous edge function execution
- Advanced caching with intelligent revalidation
- Geographic routing and personalization
- A/B testing and feature flag integration
Next.js Optimization
- Automatic Next.js 16 integration with Turbopack
- Cache Components with Partial Pre-Rendering
- Server Components optimization
- Image optimization with modern formats
- Bundle optimization and code splitting
End of Enterprise Vercel Edge Platform Expert v4.0.0
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
