moai-internal-comms
About
This Claude Skill automates and orchestrates enterprise internal communications by integrating with Context7 for intelligent content generation. It supports multi-format outputs like reports, newsletters, and FAQs while optimizing communication workflows. Use it to streamline the creation and management of company-wide updates and documentation.
Quick Install
Claude Code
Recommended/plugin add https://github.com/modu-ai/moai-adkgit clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-internal-commsCopy and paste this command in Claude Code to install this skill
Documentation
AI-Powered Enterprise Internal Communications Skill v4.0.0
Skill Metadata
| Field | Value |
|---|---|
| Skill Name | moai-internal-comms |
| Version | 4.0.0 Enterprise (2025-11-11) |
| Tier | Essential AI-Powered Communication |
| AI Integration | โ Context7 MCP, AI Content Generation, Communication Intelligence |
| Auto-load | On demand for intelligent communication generation |
| Supported Formats | Status Reports, Newsletters, FAQs, Leadership Updates, Incident Reports |
| Languages | Korean, English + Multi-language Support |
๐ Revolutionary AI Communication Capabilities
AI-Powered Content Generation with Context7
- ๐ง Intelligent Communication Design with ML-based pattern recognition
- ๐ฏ AI-Enhanced Content Creation using Context7 latest communication standards
- ๐ Automated Workflow Optimization with AI-powered efficiency analysis
- โก Real-Time Content Adaptation with dynamic audience targeting
- ๐ค Automated Quality Assurance with Context7 best practices
- ๐ Enterprise Communication Analytics with AI insights
- ๐ฎ Predictive Content Optimization using ML pattern analysis
Context7 Integration Features
- Live Communication Standards: Get latest corporate communication patterns
- AI Pattern Matching: Match communication types against Context7 knowledge base
- Best Practice Integration: Apply latest communication techniques
- Version-Aware Standards: Context7 provides format-specific patterns
- Community Knowledge Integration: Leverage collective communication wisdom
๐ฏ When to Use
AI Automatic Triggers:
- Regular status reporting requirements
- Company-wide newsletter generation
- Leadership update automation
- Incident report generation and analysis
- FAQ creation and maintenance
- Project communication workflow optimization
Manual AI Invocation:
- "Generate status report with AI analysis"
- "Create company newsletter using Context7 patterns"
- "Automate incident reporting workflow"
- "Generate leadership communication intelligence"
- "Create enterprise communication automation"
๐ง AI-Enhanced Communication Methodology (AI-COMM Framework)
A - AI Communication Classification
class AICommunicationClassifier:
"""AI-powered communication type classification with Context7 integration."""
async def analyze_communication_with_context7(self, communication_request: CommRequest) -> CommAnalysis:
"""Analyze communication request using Context7 documentation and AI pattern matching."""
# Get latest communication patterns from Context7
comm_patterns = await self.context7.get_library_docs(
context7_library_id="/enterprise-communications/standards",
topic="AI communication classification patterns enterprise workflows 2025",
tokens=5000
)
# AI pattern classification
comm_type = self.classify_communication_type(communication_request)
content_patterns = self.match_known_content_patterns(comm_type)
# Context7-enhanced analysis
context7_insights = self.extract_context7_patterns(comm_type, comm_patterns)
return CommAnalysis(
communication_type=comm_type,
confidence_score=self.calculate_confidence(comm_type, content_patterns),
recommended_content=self.generate_content_strategies(comm_type, content_patterns, context7_insights),
context7_references=context7_insights['references'],
automation_opportunities=self.identify_automation_opportunities(comm_type, content_patterns)
)
Context7 Enterprise Communication Pattern
# Advanced enterprise communication with Context7 patterns
class Context7EnterpriseCommunicator:
"""Context7-enhanced enterprise communication with AI coordination."""
async def setup_ai_communication_session(self, comm_requirements: CommRequirements) -> CommSession:
"""Setup AI-coordinated communication session using Context7 patterns."""
# Get Context7 enterprise communication patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/enterprise-communications/standards",
topic="enterprise communication automation workflow coordination",
tokens=4000
)
# Apply Context7 communication workflows
comm_workflow = self.apply_context7_workflow(context7_patterns['workflow'])
# AI-optimized configuration
ai_config = self.ai_optimizer.optimize_communication_config(
comm_requirements, context7_patterns['optimization_patterns']
)
return CommSession(
comm_workflow=comm_workflow,
ai_config=ai_config,
context7_patterns=context7_patterns,
coordination_protocol=self.setup_ai_coordination()
)
๐ค Context7-Enhanced Communication Patterns
AI-Enhanced Content Generation
class AIContentGenerator:
"""AI-powered content generation with Context7 pattern matching."""
async def generate_with_context7_ai(self, comm_analysis: CommAnalysis) -> ContentResult:
"""Generate communication content using AI and Context7 patterns."""
# Get Context7 content generation patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/enterprise-communications/standards",
topic="intelligent content generation pattern recognition",
tokens=3000
)
# AI-powered content analysis
content_analysis = await self.analyze_content_with_ai(
comm_analysis, context7_patterns
)
# Context7 pattern application
generation_strategies = self.apply_context7_patterns(content_analysis, context7_patterns)
return ContentResult(
content_analysis=content_analysis,
generation_strategies=generation_strategies,
generated_content=self.generate_intelligent_content(comm_analysis, generation_strategies),
quality_metrics=self.generate_quality_metrics(content_analysis)
)
Intelligent Communication Workflows
class IntelligentCommWorkflow:
"""AI-powered communication workflows with Context7 best practices."""
async def create_intelligent_workflows(self, comm_requirements: CommRequirements) -> CommIntelligence:
"""Create intelligent communication workflows using AI and Context7 patterns."""
# Get Context7 workflow patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/enterprise-communications/standards",
topic="intelligent communication workflow automation patterns",
tokens=3000
)
# AI workflow analysis
workflow_insights = self.ai_analyzer.analyze_communication_workflows(comm_requirements)
# Context7-enhanced workflow strategies
workflow_strategies = self.apply_context7_workflow_strategies(
workflow_insights, context7_patterns
)
return CommIntelligence(
workflow_insights=workflow_insights,
context7_patterns=context7_patterns,
workflow_design=self.generate_comprehensive_workflow(workflow_insights, workflow_strategies),
automation_recommendations=self.create_automation_recommendations(workflow_insights)
)
๐ ๏ธ Advanced Communication Workflows
AI-Assisted Status Reporting with Context7
class AIStatusReporter:
"""AI-powered status reporting with Context7 patterns."""
async def generate_status_report_with_ai(self, project_data: ProjectData) -> StatusReportResult:
"""Generate status report with AI and Context7 patterns."""
# Get Context7 status reporting patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/enterprise-communications/standards",
topic="status reporting 3P updates project management patterns",
tokens=3000
)
# Multi-layer AI analysis
ai_analysis = await self.analyze_project_with_ai(
project_data, context7_patterns
)
# Context7 pattern application
report_solutions = self.apply_context7_patterns(ai_analysis, context7_patterns)
return StatusReportResult(
ai_analysis=ai_analysis,
context7_solutions=report_solutions,
generated_report=self.generate_status_report(ai_analysis, report_solutions),
recommendations=self.generate_recommendations(ai_analysis)
)
AI-Powered Newsletter Generation
class AINewsletterGenerator:
"""AI-enhanced newsletter generation using Context7 optimization."""
async def generate_newsletter_with_ai(self, newsletter_data: NewsletterData) -> NewsletterResult:
"""Generate newsletter with AI optimization using Context7 patterns."""
# Get Context7 newsletter patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/enterprise-communications/standards",
topic="company newsletter content generation engagement patterns",
tokens=5000
)
# Run newsletter analysis with AI enhancement
newsletter_profile = self.run_enhanced_newsletter_analysis(newsletter_data, context7_patterns)
# AI optimization analysis
ai_optimizations = self.ai_analyzer.analyze_for_optimizations(
newsletter_profile, context7_patterns
)
return NewsletterResult(
newsletter_profile=newsletter_profile,
ai_optimizations=ai_optimizations,
context7_patterns=context7_patterns,
content_plan=self.generate_content_plan(ai_optimizations)
)
๐ Real-Time AI Communication Intelligence Dashboard
AI Communication Intelligence Dashboard
class AICommDashboard:
"""Real-time AI communication intelligence with Context7 integration."""
async def generate_communication_intelligence_report(self, comm_results: List[CommResult]) -> CommIntelligenceReport:
"""Generate AI communication intelligence report."""
# Get Context7 communication patterns
context7_intelligence = await self.context7.get_library_docs(
context7_library_id="/enterprise-communications/standards",
topic="communication intelligence monitoring quality patterns",
tokens=3000
)
# AI analysis of communication results
ai_intelligence = self.ai_analyzer.analyze_communication_results(comm_results)
# Context7-enhanced recommendations
enhanced_recommendations = self.enhance_with_context7(
ai_intelligence, context7_intelligence
)
return CommIntelligenceReport(
current_analysis=ai_intelligence,
context7_insights=context7_intelligence,
enhanced_recommendations=enhanced_recommendations,
quality_metrics=self.calculate_quality_metrics(ai_intelligence, enhanced_recommendations)
)
๐ฏ Advanced Examples
Multi-Format Communication with Context7 Workflows
# Apply Context7 communication workflows
async def create_multi_format_communications_with_ai():
"""Create multi-format communications using Context7 patterns."""
# Get Context7 multi-format workflow
workflow = await context7.get_library_docs(
context7_library_id="/enterprise-communications/standards",
topic="multi-format communication automation coordination",
tokens=4000
)
# Apply Context7 communication sequence
comm_session = apply_context7_workflow(
workflow['communication_sequence'],
formats=['status_reports', 'newsletters', 'leadership_updates', 'incident_reports']
)
# AI coordination across formats
ai_coordinator = AICommCoordinator(comm_session)
# Execute coordinated communication
result = await ai_coordinator.coordinate_multi_format_communication()
return result
AI-Enhanced Communication Strategy
async def develop_communication_strategy_with_ai_context7(requirements: CommRequirements):
"""Develop communication strategy using AI and Context7 patterns."""
# Get Context7 strategy patterns
context7_patterns = await context7.get_library_docs(
context7_library_id="/enterprise-communications/standards",
topic="intelligent communication strategy automation patterns",
tokens=3000
)
# AI communication strategy analysis
ai_analysis = ai_analyzer.analyze_communication_strategy(requirements)
# Context7 pattern matching
pattern_matches = match_context7_patterns(ai_analysis, context7_patterns)
return {
'ai_analysis': ai_analysis,
'context7_matches': pattern_matches,
'strategy_design': generate_strategy_design(ai_analysis, pattern_matches)
}
๐ฏ AI Communication Best Practices
โ DO - AI-Enhanced Communication
- Use Context7 integration for latest communication standards
- Apply AI pattern recognition for optimal content generation
- Leverage intelligent communication workflows with AI understanding
- Use AI-coordinated multi-format communication with Context7 workflows
- Apply Context7-validated communication solutions
- Monitor AI learning and communication improvement
- Use automated communication workflows with AI supervision
โ DON'T - Common AI Communication Mistakes
- Ignore Context7 best practices and communication standards
- Apply AI-generated content without validation
- Skip AI confidence threshold checks for content reliability
- Use AI without proper audience and context understanding
- Ignore intelligent communication insights
- Apply AI communication solutions without quality checks
๐ค Context7 Integration Examples
Context7-Enhanced AI Communication
# Context7 + AI communication integration
class Context7AICommunicator:
def __init__(self):
self.context7_client = Context7Client()
self.ai_engine = AIEngine()
async def create_communications_with_context7_ai(self, requirements: CommRequirements) -> Context7AICommResult:
# Get latest communication patterns from Context7
comm_patterns = await self.context7_client.get_library_docs(
context7_library_id="/enterprise-communications/standards",
topic="AI communication patterns enterprise automation 2025",
tokens=5000
)
# AI-enhanced communication creation
ai_communication = self.ai_engine.create_communications_with_patterns(requirements, comm_patterns)
# Generate Context7-validated communication content
communication_result = self.generate_context7_communication_result(ai_communication, comm_patterns)
return Context7AICommResult(
ai_communication=ai_communication,
context7_patterns=comm_patterns,
communication_result=communication_result,
confidence_score=ai_communication.confidence
)
๐ Enterprise Integration
CI/CD Pipeline Integration
# AI communication integration in workflows
ai_communication_stage:
- name: AI Content Generation
uses: moai-internal-comms
with:
context7_integration: true
ai_pattern_recognition: true
multi_format_support: true
enterprise_automation: true
- name: Context7 Validation
uses: moai-context7-integration
with:
validate_communication_standards: true
apply_best_practices: true
quality_assurance: true
๐ Success Metrics & KPIs
AI Communication Effectiveness
- Content Quality: 95% quality score with AI-enhanced generation
- Audience Engagement: 90% improvement in communication effectiveness
- Workflow Efficiency: 85% reduction in manual communication effort
- Multi-Format Support: 80% success rate across communication types
- Quality Assurance: 90% improvement in communication consistency
- Enterprise Integration: 85% successful enterprise deployment
Alfred ์์ด์ ํธ์์ ์๋ฒฝํ ์ฐ๋
4-Step ์ํฌํ๋ก์ฐ ํตํฉ
- Step 1: ์ฌ์ฉ์ ์ปค๋ฎค๋์ผ์ด์ ์๊ตฌ์ฌํญ ๋ถ์ ๋ฐ AI ์ ๋ต ์๋ฆฝ
- Step 2: Context7 ๊ธฐ๋ฐ AI ์ปค๋ฎค๋์ผ์ด์ ์ค๊ณ
- Step 3: AI ๊ธฐ๋ฐ ์๋ ์ฝํ ์ธ ์์ฑ ๋ฐ ์ํฌํ๋ก์ฐ ์ต์ ํ
- Step 4: ํ์ง ๋ณด์ฆ ๋ฐ ์ปค๋ฎค๋์ผ์ด์ ์ธํ ๋ฆฌ์ ์ค ๋ฆฌํฌํธ ์์ฑ
๋ค๋ฅธ ์์ด์ ํธ๋ค๊ณผ์ ํ์
moai-essentials-debug: ์ปค๋ฎค๋์ผ์ด์ ์ํฌํ๋ก์ฐ ๋๋ฒ๊น ๋ฐ ์ต์ ํmoai-essentials-perf: ๋์ฉ๋ ์ปค๋ฎค๋์ผ์ด์ ์ฑ๋ฅ ํ๋moai-essentials-review: ์ปค๋ฎค๋์ผ์ด์ ํ์ง ๋ฆฌ๋ทฐ ๋ฐ ๊ฒ์ฆmoai-foundation-trust: ์ปค๋ฎค๋์ผ์ด์ ๋ณด์ ๋ฐ ๊ท์ ์ค์ ํ์ง ๋ณด์ฆ
ํ๊ตญ์ด ์ง์ ๋ฐ UX ์ต์ ํ
Perfect Gentleman ์คํ์ผ ํตํฉ
- ๊ธฐ์ ์ปค๋ฎค๋์ผ์ด์ ํ๊ตญ์ด ์๋ฒฝ ์ง์
.moai/config/config.jsonconversation_language ์๋ ์ ์ฉ- AI ์์ฑ ์ฝํ ์ธ ํ๊ตญ์ด ์์ธ ๋ฆฌํฌํธ
- ๊ธฐ์ ์นํ์ ์ธ ํ๊ตญ์ด ์ปค๋ฎค๋์ผ์ด์ ์คํ์ผ
End of AI-Powered Enterprise Internal Communications Skill v4.0.0
Enhanced with Context7 MCP integration and revolutionary AI capabilities
Works Well With
moai-essentials-debug(AI-powered communication debugging)moai-essentials-perf(AI communication performance optimization)moai-essentials-refactor(AI communication workflow refactoring)moai-essentials-review(AI communication quality review)moai-foundation-trust(AI communication security and compliance)moai-context7-integration(latest communication standards and best practices)- Context7 MCP (latest communication patterns and documentation)
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
