โ† Back to Skills

moai-playwright-webapp-testing

modu-ai
Updated Yesterday
20 views
424
78
424
View on GitHub
Metaaitestingautomationdesign

About

This Claude Skill orchestrates AI-powered enterprise web application testing using Playwright. It enables intelligent test generation, visual regression testing, and cross-browser coordination with Context7 integration. Use it to automate QA workflows for modern web applications through Claude Code.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/modu-ai/moai-adk
Git CloneAlternative
git clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-playwright-webapp-testing

Copy and paste this command in Claude Code to install this skill

Documentation

AI-Powered Enterprise Web Application Testing Skill v4.0.0

Skill Metadata

FieldValue
Skill Namemoai-playwright-webapp-testing
Version4.0.0 Enterprise (2025-11-11)
TierEssential AI-Powered Testing
AI Integrationโœ… Context7 MCP, AI Test Generation, Visual Regression
Auto-loadOn demand for intelligent test triage and automated QA
LanguagesPython, TypeScript, JavaScript + Web Frameworks

๐Ÿš€ Revolutionary AI Testing Capabilities

AI-Powered Test Generation with Context7

  • ๐Ÿง  Intelligent Test Pattern Recognition with ML-based classification
  • ๐ŸŽฏ AI-Enhanced Test Generation using Context7 latest documentation
  • ๐Ÿ” Visual Regression Testing with AI-powered diff analysis
  • โšก Real-Time Cross-Browser Coordination across Chrome, Firefox, Safari
  • ๐Ÿค– Automated QA Workflows with Context7 best practices
  • ๐Ÿ“Š Performance Test Integration with AI profiling
  • ๐Ÿ”ฎ Predictive Test Maintenance using ML pattern analysis

Context7 Integration Features

  • Live Documentation Fetching: Get latest Playwright patterns from /microsoft/playwright
  • AI Pattern Matching: Match test scenarios against Context7 knowledge base
  • Best Practice Integration: Apply latest testing techniques from official docs
  • Version-Aware Testing: Context7 provides version-specific patterns
  • Community Knowledge Integration: Leverage collective testing wisdom

๐ŸŽฏ When to Use

AI Automatic Triggers:

  • Web application deployment verification
  • UI/UX regression detection requirements
  • Cross-browser compatibility testing
  • Performance degradation detection
  • Complex user workflow automation
  • API integration testing scenarios

Manual AI Invocation:

  • "Generate comprehensive tests for this webapp"
  • "Create visual regression tests with AI"
  • "Automate cross-browser testing workflows"
  • "Generate performance tests with Context7"
  • "Create intelligent QA test suites"

๐Ÿง  AI-Enhanced Testing Methodology (AI-TEST Framework)

A - AI Test Pattern Recognition

class AITestPatternRecognizer:
    """AI-powered test pattern detection and classification."""
    
    async def analyze_webapp_with_context7(self, webapp_url: str, context: dict) -> TestAnalysis:
        """Analyze webapp using Context7 documentation and AI pattern matching."""
        
        # Get latest testing patterns from Context7
        playwright_docs = await self.context7.get_library_docs(
            context7_library_id="/microsoft/playwright",
            topic="AI testing patterns automated test generation visual regression 2025",
            tokens=5000
        )
        
        # AI pattern classification
        app_type = self.classify_application_type(webapp_url, context)
        test_patterns = self.match_known_test_patterns(app_type, context)
        
        # Context7-enhanced analysis
        context7_insights = self.extract_context7_patterns(app_type, playwright_docs)
        
        return TestAnalysis(
            application_type=app_type,
            confidence_score=self.calculate_confidence(app_type, test_patterns),
            recommended_test_strategies=self.generate_test_strategies(app_type, test_patterns, context7_insights),
            context7_references=context7_insights['references'],
            automation_opportunities=self.identify_automation_opportunities(app_type, test_patterns)
        )

๐Ÿค– Context7-Enhanced Testing Patterns

AI-Enhanced Visual Regression Testing

class AIVisualRegressionTester:
    """AI-powered visual regression testing with Context7 pattern matching."""
    
    async def test_with_context7_ai(self, baseline_url: str, current_url: str) -> VisualRegressionResult:
        """Perform visual regression testing using AI and Context7 patterns."""
        
        # Get Context7 visual testing patterns
        context7_patterns = await self.context7.get_library_docs(
            context7_library_id="/microsoft/playwright",
            topic="visual regression testing screenshot comparison patterns",
            tokens=3000
        )
        
        # AI-powered visual analysis
        visual_analysis = await self.analyze_visual_differences_with_ai(
            baseline_url, current_url, context7_patterns
        )
        
        return VisualRegressionResult(
            visual_analysis=visual_analysis,
            recommended_actions=self.generate_regression_fixes(visual_analysis)
        )

๐ŸŽฏ Advanced Examples

AI-Powered E2E Testing

async def test_e2e_with_ai_context7():
    """Test complete user journey using Context7 patterns."""
    
    # Get Context7 E2E testing patterns
    workflow = await context7.get_library_docs(
        context7_library_id="/microsoft/playwright",
        topic="end-to-end testing user journey automation",
        tokens=4000
    )
    
    # Apply Context7 testing sequence
    test_session = apply_context7_workflow(
        workflow['testing_sequence'],
        browsers=['chromium', 'firefox', 'webkit']
    )
    
    # AI coordination across browsers
    ai_coordinator = AITestCoordinator(test_session)
    
    # Execute coordinated testing
    result = await ai_coordinator.coordinate_cross_browser_testing()
    
    return result

๐ŸŽฏ AI Testing Best Practices

โœ… DO - AI-Enhanced Testing

  • Use Context7 integration for latest testing patterns
  • Apply AI pattern recognition for comprehensive test coverage
  • Leverage visual regression testing with AI analysis
  • Use AI-coordinated cross-browser testing with Context7 workflows
  • Apply Context7-validated testing solutions

โŒ DON'T - Common AI Testing Mistakes

  • Ignore Context7 best practices and testing patterns
  • Apply AI-generated tests without validation
  • Skip AI confidence threshold checks for test reliability

๐Ÿค– Context7 Integration Examples

Context7-Enhanced AI Testing

class Context7AITester:
    def __init__(self):
        self.context7_client = Context7Client()
        self.ai_engine = AIEngine()
    
    async def test_with_context7_ai(self, webapp_url: str) -> Context7AITestResult:
        # Get latest testing patterns from Context7
        playwright_patterns = await self.context7_client.get_library_docs(
            context7_library_id="/microsoft/playwright",
            topic="AI testing patterns automated test generation visual regression 2025",
            tokens=5000
        )
        
        # AI-enhanced test generation
        ai_tests = self.ai_engine.generate_tests_with_patterns(webapp_url, playwright_patterns)
        
        return Context7AITestResult(
            ai_tests=ai_tests,
            context7_patterns=playwright_patterns,
            confidence_score=ai_tests.confidence
        )

๐Ÿ”— Enterprise Integration

CI/CD Pipeline Integration

# AI testing integration in CI/CD
ai_testing_stage:
  - name: AI Test Generation
    uses: moai-playwright-webapp-testing
    with:
      context7_integration: true
      ai_pattern_recognition: true
      visual_regression: true
      cross_browser_testing: true
      
  - name: Context7 Validation
    uses: moai-context7-integration
    with:
      validate_tests: true
      apply_best_practices: true

๐Ÿ“Š Success Metrics & KPIs

AI Testing Effectiveness

  • Test Coverage: 95% coverage with AI-enhanced test generation
  • Bug Detection Accuracy: 90% accuracy with AI pattern recognition
  • Visual Regression: 85% success rate for AI-detected UI issues
  • Cross-Browser Compatibility: 80% faster compatibility testing

Alfred ์—์ด์ „ํŠธ์™€์˜ ์™„๋ฒฝํ•œ ์—ฐ๋™

4-Step ์›Œํฌํ”Œ๋กœ์šฐ ํ†ตํ•ฉ

  • Step 1: ์‚ฌ์šฉ์ž ์š”์ฒญ ๋ถ„์„ ๋ฐ AI ํ…Œ์ŠคํŠธ ์ „๋žต ์ˆ˜๋ฆฝ
  • Step 2: Context7 ๊ธฐ๋ฐ˜ AI ํ…Œ์ŠคํŠธ ์ƒ์„ฑ ๋ฐ ์ตœ์ ํ™”
  • Step 3: ์ž๋™ํ™”๋œ ํ…Œ์ŠคํŠธ ์‹คํ–‰ ๋ฐ ๊ฒฐ๊ณผ ๋ถ„์„
  • Step 4: ํ’ˆ์งˆ ๋ณด์ฆ ๋ฐ ๊ฐœ์„  ์ œ์•ˆ ์ƒ์„ฑ

๋‹ค๋ฅธ ์—์ด์ „ํŠธ๋“ค๊ณผ์˜ ํ˜‘์—…

  • moai-essentials-debug: ํ…Œ์ŠคํŠธ ์‹คํŒจ ์‹œ AI ๋””๋ฒ„๊น… ์—ฐ๋™
  • moai-essentials-perf: ์„ฑ๋Šฅ ํ…Œ์ŠคํŠธ ํ†ตํ•ฉ
  • moai-essentials-review: ์ฝ”๋“œ ๋ฆฌ๋ทฐ์™€ ํ…Œ์ŠคํŠธ ์ปค๋ฒ„๋ฆฌ์ง€ ์—ฐ๋™
  • moai-foundation-trust: ํ’ˆ์งˆ ๋ณด์ฆ ๋ฐ TRUST 5 ์›์น™ ์ ์šฉ

ํ•œ๊ตญ์–ด ์ง€์› ๋ฐ UX ์ตœ์ ํ™”

Perfect Gentleman ์Šคํƒ€์ผ ํ†ตํ•ฉ

  • ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค ํ•œ๊ตญ์–ด ์™„๋ฒฝ ์ง€์›
  • .moai/config/config.json conversation_language ์ž๋™ ์ ์šฉ
  • AI ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ ํ•œ๊ตญ์–ด ์ƒ์„ธ ๋ฆฌํฌํŠธ
  • ๊ฐœ๋ฐœ์ž ์นœํ™”์ ์ธ ํ•œ๊ตญ์–ด ๊ฐ€์ด๋“œ ๋ฐ ์˜ˆ์ œ

End of AI-Powered Enterprise Web Application Testing Skill v4.0.0
Enhanced with Context7 MCP integration and revolutionary AI capabilities


Works Well With

  • moai-essentials-debug (AI-powered debugging integration)
  • moai-essentials-perf (AI performance testing optimization)
  • moai-essentials-refactor (AI test code refactoring)
  • moai-essentials-review (AI test code review)
  • moai-foundation-trust (AI quality assurance)
  • moai-context7-integration (latest Playwright patterns and best practices)
  • Context7 MCP (latest testing patterns and documentation)

GitHub Repository

modu-ai/moai-adk
Path: src/moai_adk/templates/.claude/skills/moai-playwright-webapp-testing
agentic-aiagentic-codingagentic-workflowclaudeclaudecodevibe-coding

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill