Back to Skills

moai-learning-optimizer

modu-ai
Updated Today
26 views
424
78
424
View on GitHub
Otherai

About

The moai-learning-optimizer is an intelligent system that analyzes session patterns and identifies improvement opportunities to continuously enhance Alfred's performance. It uses adaptive learning and knowledge optimization to improve system behavior and performance. Developers should use this skill when optimizing Alfred, analyzing session patterns, or implementing adaptive learning capabilities.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/modu-ai/moai-adk
Git CloneAlternative
git clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-learning-optimizer

Copy and paste this command in Claude Code to install this skill

Documentation

Learning System Optimizer

Skill Metadata

FieldValue
Version1.0.0
TierAlfred (Learning System)
Auto-loadDuring session analysis or on demand
PurposeOptimize Alfred performance through adaptive learning

What It Does

Intelligent learning system optimizer that analyzes Alfred's session patterns, identifies improvement opportunities, and continuously enhances performance through adaptive learning and knowledge optimization. Learns from user interactions to provide increasingly relevant and efficient assistance.

Core capabilities:

  • ✅ Session pattern analysis and behavior learning
  • ✅ Performance optimization based on usage patterns
  • ✅ Adaptive skill selection and invocation timing
  • ✅ Knowledge gap identification and filling
  • ✅ User preference learning and personalization
  • ✅ System performance monitoring and tuning
  • ✅ Predictive assistance and proactive recommendations
  • ✅ Continuous improvement through feedback integration

When to Use

  • ✅ When optimizing Alfred's performance and behavior
  • ✅ During session analysis and pattern discovery
  • ✅ When implementing adaptive learning capabilities
  • ✅ For system performance monitoring and tuning
  • ✅ When personalizing Alfred's responses and recommendations
  • ✅ During troubleshooting and performance issues
  • ✅ For continuous system improvement and optimization

Learning Analytics Engine

1. Session Pattern Analysis

def analyze_session_patterns():
    """Analyze Alfred session patterns for optimization opportunities"""
    session_metrics = {
        "session_duration": measure_session_duration(),
        "tool_usage_patterns": analyze_tool_usage(),
        "skill_invocation_patterns": analyze_skill_usage(),
        "user_interaction_patterns": analyze_user_interactions(),
        "success_rates": calculate_success_rates(),
        "performance_bottlenecks": identify_bottlenecks(),
        "user_satisfaction": measure_user_satisfaction()
    }

    # Pattern recognition
    patterns = {
        "peak_usage_times": identify_peak_usage_times(session_metrics),
        "preferred_tools": identify_preferred_tools(session_metrics),
        "skill_effectiveness": measure_skill_effectiveness(session_metrics),
        "workflow_optimization": identify_workflow_optimizations(session_metrics)
    }

    return {
        "metrics": session_metrics,
        "patterns": patterns,
        "recommendations": generate_learning_recommendations(patterns)
    }

2. Adaptive Learning System

class AdaptiveLearningSystem:
    """Adaptive learning system for continuous improvement"""

    def __init__(self):
        self.knowledge_base = load_knowledge_base()
        self.user_preferences = load_user_preferences()
        self.performance_history = load_performance_history()
        self.learning_rate = 0.1

    def learn_from_session(self, session_data):
        """Learn from completed session"""
        # Extract learning signals
        signals = extract_learning_signals(session_data)

        # Update knowledge base
        self.update_knowledge(signals)

        # Adjust user preferences
        self.adjust_preferences(signals)

        # Optimize performance parameters
        self.optimize_parameters(signals)

        # Save learning updates
        self.save_learning_state()

    def predict_needs(self, context):
        """Predict user needs based on learned patterns"""
        predictions = {
            "likely_tools": predict_tool_usage(context),
            "optimal_skills": predict_skill_selection(context),
            "potential_issues": anticipate_problems(context),
            "recommended_actions": suggest_actions(context)
        }

        return predictions

    def adapt_responses(self, user_feedback):
        """Adapt response patterns based on user feedback"""
        # Analyze feedback patterns
        feedback_analysis = analyze_user_feedback(user_feedback)

        # Adjust response strategies
        self.adjust_response_strategies(feedback_analysis)

        # Update communication preferences
        self.update_communication_preferences(feedback_analysis)

        # Refine assistance approach
        self.refine_assistance_approach(feedback_analysis)

3. Performance Optimization Engine

def optimize_alfred_performance():
    """Optimize Alfred's performance based on learning data"""
    optimization_areas = {
        "skill_loading": optimize_skill_loading(),
        "response_time": optimize_response_time(),
        "context_utilization": optimize_context_usage(),
        "knowledge_retrieval": optimize_knowledge_retrieval(),
        "tool_selection": optimize_tool_selection(),
        "workflow_efficiency": optimize_workflow_efficiency()
    }

    # Generate optimization plan
    optimization_plan = {
        "current_performance": measure_current_performance(),
        "target_performance": set_performance_targets(),
        "optimization_strategies": identify_optimization_strategies(),
        "implementation_priority": prioritize_optimizations(),
        "expected_improvements": estimate_improvements()
    }

    return optimization_plan

Knowledge Management

1. Knowledge Gap Analysis

def analyze_knowledge_gaps():
    """Identify gaps in Alfred's knowledge and capabilities"""
    gap_analysis = {
        "missing_knowledge": identify_missing_knowledge(),
        "outdated_information": identify_outdated_info(),
        "user_unmet_needs": identify_unmet_needs(),
        "skill_deficiencies": identify_skill_deficiencies(),
        "context_limitations": identify_context_limitations()
    }

    # Prioritize gaps for learning
    prioritized_gaps = prioritize_knowledge_gaps(gap_analysis)

    # Generate learning plan
    learning_plan = {
        "immediate_needs": prioritized_gaps["high_priority"],
        "medium_term": prioritized_gaps["medium_priority"],
        "long_term": prioritized_gaps["low_priority"],
        "learning_resources": identify_learning_resources(),
        "implementation_strategy": create_learning_strategy()
    }

    return learning_plan

2. Knowledge Integration

def integrate_new_knowledge(knowledge_items):
    """Integrate new knowledge into Alfred's system"""
    integration_process = {
        "validation": validate_knowledge(knowledge_items),
        "categorization": categorize_knowledge(knowledge_items),
        "indexing": index_knowledge(knowledge_items),
        "linking": link_knowledge_to_existing(knowledge_items),
        "testing": test_knowledge_integration(knowledge_items),
        "deployment": deploy_knowledge_updates(knowledge_items)
    }

    for step, process in integration_process.items():
        result = execute_integration_step(step, process)
        if not result.success:
            handle_integration_failure(step, result.error)
            return False

    return True

3. Knowledge Quality Management

def maintain_knowledge_quality():
    """Maintain and improve knowledge quality"""
    quality_metrics = {
        "accuracy": measure_knowledge_accuracy(),
        "relevance": measure_knowledge_relevance(),
        "completeness": measure_knowledge_completeness(),
        "consistency": measure_knowledge_consistency(),
        "freshness": measure_knowledge_freshness()
    }

    quality_issues = identify_quality_issues(quality_metrics)

    if quality_issues:
        quality_improvement_plan = create_quality_improvement_plan(quality_issues)
        execute_quality_improvements(quality_improvement_plan)

    return quality_metrics

User Personalization

1. Preference Learning

def learn_user_preferences():
    """Learn and adapt to user preferences"""
    preference_data = {
        "communication_style": analyze_communication_preferences(),
        "detail_level_preference": analyze_detail_preferences(),
        "tool_preferences": analyze_tool_preferences(),
        "workflow_patterns": analyze_workflow_patterns(),
        "response_timing": analyze_response_timing_preferences(),
        "error_handling": analyze_error_handling_preferences()
    }

    # Build user profile
    user_profile = build_user_profile(preference_data)

    # Personalize Alfred behavior
    personalize_alfred_behavior(user_profile)

    return user_profile

2. Adaptive Assistance

class AdaptiveAssistance:
    """Adaptive assistance system based on user patterns"""

    def __init__(self):
        self.user_profile = load_user_profile()
        self.assistance_strategies = load_assistance_strategies()

    def adapt_assistance_level(self, context):
        """Adapt assistance level based on context and user profile"""
        assistance_level = {
            "proactive_suggestions": should_be_proactive(context),
            "detail_provided": determine_detail_level(context),
            "intervention_points": identify_intervention_points(context),
            "explanation_style": choose_explanation_style(context)
        }

        return assistance_level

    def personalize_responses(self, base_response, context):
        """Personalize responses based on user preferences"""
        personalized_response = {
            "content": adapt_content(base_response, self.user_profile),
            "tone": adapt_tone(base_response, self.user_profile),
            "format": adapt_format(base_response, self.user_profile),
            "timing": adapt_timing(base_response, context, self.user_profile)
        }

        return personalized_response

3. Experience Optimization

def optimize_user_experience():
    """Optimize overall user experience based on learning data"""
    experience_metrics = {
        "response_satisfaction": measure_response_satisfaction(),
        "task_completion_efficiency": measure_task_efficiency(),
        "learning_curve_progress": measure_learning_progress(),
        "error_recovery_time": measure_error_recovery(),
        "engagement_level": measure_engagement_level()
    }

    # Identify improvement opportunities
    improvements = identify_experience_improvements(experience_metrics)

    # Create optimization plan
    optimization_plan = {
        "current_state": experience_metrics,
        "target_state": set_experience_targets(),
        "improvements": improvements,
        "implementation_timeline": create_implementation_timeline(),
        "success_metrics": define_success_metrics()
    }

    return optimization_plan

Predictive Analytics

1. Behavior Prediction

def predict_user_behavior(context):
    """Predict user behavior and needs"""
    behavioral_patterns = load_behavioral_patterns()
    current_context = extract_context_features(context)

    predictions = {
        "likely_next_actions": predict_next_actions(current_context, behavioral_patterns),
        "potential_issues": anticipate_issues(current_context, behavioral_patterns),
        "optimal_interventions": suggest_interventions(current_context, behavioral_patterns),
        "resource_needs": predict_resource_needs(current_context, behavioral_patterns)
    }

    return predictions

2. Performance Prediction

def predict_system_performance(task_context):
    """Predict system performance for given task"""
    performance_history = load_performance_history()
    task_features = extract_task_features(task_context)

    predictions = {
        "expected_duration": predict_task_duration(task_features, performance_history),
        "likely_bottlenecks": predict_bottlenecks(task_features, performance_history),
        "resource_requirements": predict_resource_needs(task_features, performance_history),
        "success_probability": predict_success_probability(task_features, performance_history)
    }

    return predictions

3. Optimization Opportunities

def identify_optimization_opportunities():
    """Identify opportunities for system optimization"""
    system_data = collect_system_data()
    performance_data = collect_performance_data()
    user_data = collect_user_data()

    opportunities = {
        "skill_optimization": identify_skill_optimizations(system_data),
        "workflow_improvements": identify_workflow_improvements(user_data),
        "performance_tuning": identify_performance_tunings(performance_data),
        "knowledge_enhancement": identify_knowledge_opportunities(system_data, user_data)
    }

    # Prioritize opportunities
    prioritized_opportunities = prioritize_optimization_opportunities(opportunities)

    return prioritized_opportunities

Continuous Improvement

1. Feedback Integration

def integrate_user_feedback(feedback_data):
    """Integrate user feedback for continuous improvement"""
    feedback_analysis = {
        "satisfaction_trends": analyze_satisfaction_trends(feedback_data),
        "common_issues": identify_common_issues(feedback_data),
        "improvement_suggestions": extract_improvement_suggestions(feedback_data),
        "success_patterns": identify_success_patterns(feedback_data)
    }

    # Update system based on feedback
    system_updates = {
        "response_improvements": improve_responses(feedback_analysis),
        "workflow_optimizations": optimize_workflows(feedback_analysis),
        "knowledge_updates": update_knowledge(feedback_analysis),
        "performance_tuning": tune_performance(feedback_analysis)
    }

    return system_updates

2. Learning Loop Management

class LearningLoop:
    """Manage continuous learning loop"""

    def __init__(self):
        self.learning_cycle = 0
        self.performance_history = []
        self.improvement_tracker = ImprovementTracker()

    def execute_learning_cycle(self):
        """Execute one complete learning cycle"""
        # 1. Collect data
        cycle_data = collect_cycle_data()

        # 2. Analyze patterns
        patterns = analyze_patterns(cycle_data)

        # 3. Generate insights
        insights = generate_insights(patterns)

        # 4. Implement improvements
        improvements = implement_improvements(insights)

        # 5. Validate results
        validation = validate_improvements(improvements)

        # 6. Update learning state
        self.update_learning_state(cycle_data, insights, improvements, validation)

        self.learning_cycle += 1

        return {
            "cycle": self.learning_cycle,
            "data": cycle_data,
            "insights": insights,
            "improvements": improvements,
            "validation": validation
        }

3. System Evolution

def evolve_system_capabilities():
    """Evolve system capabilities based on learning"""
    evolution_plan = {
        "current_capabilities": assess_current_capabilities(),
        "future_requirements": anticipate_future_requirements(),
        "capability_gaps": identify_capability_gaps(),
        "evolution_roadmap": create_evolution_roadmap(),
        "resource_needs": assess_resource_needs()
    }

    # Implement evolution steps
    for evolution_step in evolution_plan["evolution_roadmap"]:
        implement_evolution_step(evolution_step)
        validate_evolution_result(evolution_step)

    return evolution_plan

Integration Examples

Example 1: Session-Based Learning

def learn_from_current_session():
    """Learn from the current Alfred session"""
    Skill("moai-learning-optimizer")

    session_data = collect_current_session_data()
    learning_analysis = analyze_session_patterns()

    # Update user preferences
    update_preferences(learning_analysis)

    # Optimize performance
    optimize_performance(learning_analysis)

    # Identify improvement opportunities
    improvements = identify_improvement_opportunities()

    display_learning_summary(learning_analysis, improvements)

Example 2: Predictive Assistance

def provide_predictive_assistance():
    """Provide predictive assistance based on learned patterns"""
    Skill("moai-learning-optimizer")

    current_context = get_current_context()
    predictions = predict_user_behavior(current_context)

    # Offer proactive assistance
    if predictions["likely_next_actions"]:
        suggest_next_steps(predictions["likely_next_actions"])

    # Prevent potential issues
    if predictions["potential_issues"]:
        provide_preventive_guidance(predictions["potential_issues"])

Example 3: Performance Optimization

def optimize_system_performance():
    """Optimize Alfred's performance based on learning data"""
    Skill("moai-learning-optimizer")

    optimization_plan = optimize_alfred_performance()

    # Implement high-priority optimizations
    for optimization in optimization_plan["high_priority"]:
        implement_optimization(optimization)

    # Measure improvements
    improvements = measure_performance_improvements()

    display_optimization_results(optimizations, improvements)

Usage Examples

Example 1: Learning Analysis

# User wants to understand Alfred's learning progress
Skill("moai-learning-optimizer")

learning_report = generate_learning_report()
display_learning_dashboard(learning_report)

if learning_report["improvement_opportunities"]:
    suggest_improvements(learning_report["improvement_opportunities"])

Example 2: Personalization Setup

# User wants to personalize Alfred's behavior
Skill("moai-learning-optimizer")

preferences = learn_user_preferences()
personalization_plan = create_personalization_plan(preferences)

apply_personalization(personalization_plan)

Example 3: System Evolution

# User wants to evolve Alfred's capabilities
Skill("moai-learning-optimizer")

evolution_plan = evolve_system_capabilities()
display_evolution_roadmap(evolution_plan)

if confirm_evolution(evolution_plan):
    execute_evolution(evolution_plan)

End of Skill | Intelligent learning system for continuous Alfred optimization and adaptation

GitHub Repository

modu-ai/moai-adk
Path: .claude/skills/moai-learning-optimizer
agentic-aiagentic-codingagentic-workflowclaudeclaudecodevibe-coding

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill