Configuration
About
Use this skill when developers ask about Effect's configuration system or related terms like Config.string or ConfigProvider. It explains how Effect provides type-safe configuration loading from environment variables and other sources with validation and default values. The skill covers defining config schemas, handling sensitive data, and integrating configuration into Effect applications.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/ConfigurationCopy and paste this command in Claude Code to install this skill
Documentation
Configuration in Effect
Overview
Effect provides type-safe configuration loading with:
- Automatic environment variable reading
- Validation and type conversion
- Default values and composition
- Sensitive value handling
- Multiple config sources (env, JSON, custom)
Basic Configuration Types
import { Config, Effect } from "effect"
const host = Config.string("HOST")
const port = Config.number("PORT")
const debug = Config.boolean("DEBUG")
const maxConnections = Config.integer("MAX_CONNECTIONS")
Using Config in Effects
const program = Effect.gen(function* () {
const host = yield* Config.string("DATABASE_HOST")
const port = yield* Config.number("DATABASE_PORT")
return { host, port }
})
// Runs and reads from environment
await Effect.runPromise(program)
Default Values
const port = Config.number("PORT").pipe(
Config.withDefault(3000)
)
const debug = Config.boolean("DEBUG").pipe(
Config.withDefault(false)
)
Optional Configuration
const apiKey = Config.string("API_KEY").pipe(
Config.option
)
// Type: Effect<Option<string>>
Combining Configurations
Using Config.all
const dbConfig = Config.all({
host: Config.string("DB_HOST"),
port: Config.number("DB_PORT"),
database: Config.string("DB_NAME"),
maxConnections: Config.number("DB_MAX_CONN").pipe(
Config.withDefault(10)
)
})
const program = Effect.gen(function* () {
const config = yield* dbConfig
// config: { host: string, port: number, database: string, maxConnections: number }
})
Nested Configurations
const dbConfig = Config.nested("DB")(
Config.all({
host: Config.string("HOST"), // Reads DB_HOST
port: Config.number("PORT"), // Reads DB_PORT
name: Config.string("NAME") // Reads DB_NAME
})
)
Config with Schema Validation
Use Effect Schema for complex validation:
import { Config, Schema } from "effect"
const PortSchema = Schema.Number.pipe(
Schema.int(),
Schema.between(1, 65535)
)
const port = Config.number("PORT").pipe(
Config.mapOrFail((n) =>
Schema.decodeUnknownEither(PortSchema)(n).pipe(
Either.mapLeft((e) => ConfigError.InvalidData([], `Invalid port: ${n}`))
)
)
)
Handling Sensitive Values
Config.redacted
Prevents accidental logging of sensitive values:
const apiKey = Config.redacted("API_KEY")
// Type: Effect<Redacted<string>>
const program = Effect.gen(function* () {
const key = yield* apiKey
// Safe to log - shows "<redacted>"
yield* Effect.log(`Key: ${key}`)
// Get actual value when needed
const actual = Redacted.value(key)
})
Secret Type
const dbPassword = Config.secret("DB_PASSWORD")
// Type: Effect<Secret.Secret>
const program = Effect.gen(function* () {
const password = yield* dbPassword
const value = Secret.value(password) // Get actual string
})
Config Operators
Transforming Values
const upperHost = Config.string("HOST").pipe(
Config.map((s) => s.toUpperCase())
)
const port = Config.string("PORT").pipe(
Config.mapOrFail((s) => {
const n = parseInt(s)
return isNaN(n)
? Either.left(ConfigError.InvalidData([], "Not a number"))
: Either.right(n)
})
)
Fallback Values
const host = Config.string("PRIMARY_HOST").pipe(
Config.orElse(() => Config.string("SECONDARY_HOST")),
Config.orElse(() => Config.succeed("localhost"))
)
Custom Config Providers
From Environment (Default)
const program = Effect.gen(function* () {
const host = yield* Config.string("HOST")
})
From JSON/Object
import { ConfigProvider, Layer } from "effect"
const config = {
host: "localhost",
port: "3000",
database: {
host: "db.example.com",
port: "5432"
}
}
const JsonConfigProvider = ConfigProvider.fromJson(config)
const program = Effect.gen(function* () {
const host = yield* Config.string("host")
const dbHost = yield* Config.nested("database")(Config.string("host"))
})
const runnable = program.pipe(
Effect.provide(Layer.setConfigProvider(JsonConfigProvider))
)
From Map
const MapProvider = ConfigProvider.fromMap(
new Map([
["HOST", "localhost"],
["PORT", "3000"]
])
)
Combining Providers
const CombinedProvider = ConfigProvider.orElse(
ConfigProvider.fromEnv(),
() => ConfigProvider.fromJson(defaultConfig)
)
Config in Layers
const AppConfigLive = Layer.effect(
AppConfig,
Effect.gen(function* () {
const host = yield* Config.string("HOST")
const port = yield* Config.number("PORT")
const debug = yield* Config.boolean("DEBUG").pipe(Config.withDefault(false))
return { host, port, debug }
})
)
Testing Configuration
Mock Config Provider
const TestConfigProvider = ConfigProvider.fromMap(
new Map([
["HOST", "test-host"],
["PORT", "9999"]
])
)
const testProgram = program.pipe(
Effect.provide(Layer.setConfigProvider(TestConfigProvider))
)
Config.succeed for Hardcoded
const testConfig = Config.succeed({
host: "localhost",
port: 3000
})
Error Handling
Config failures produce ConfigError:
const program = Effect.gen(function* () {
const host = yield* Config.string("REQUIRED_HOST")
}).pipe(
Effect.catchTag("ConfigError", (error) =>
Effect.fail(new StartupError({ cause: error }))
)
)
Complete Example
import { Config, Effect, Layer, Schema } from "effect"
// Define config shape
const AppConfig = Config.all({
server: Config.nested("SERVER")(
Config.all({
host: Config.string("HOST").pipe(Config.withDefault("0.0.0.0")),
port: Config.number("PORT").pipe(Config.withDefault(3000))
})
),
database: Config.nested("DATABASE")(
Config.all({
url: Config.redacted("URL"),
maxConnections: Config.number("MAX_CONN").pipe(Config.withDefault(10))
})
),
features: Config.all({
debug: Config.boolean("DEBUG").pipe(Config.withDefault(false)),
metrics: Config.boolean("METRICS_ENABLED").pipe(Config.withDefault(true))
})
})
// Use in application
const program = Effect.gen(function* () {
const config = yield* AppConfig
yield* Effect.log(`Starting server on ${config.server.host}:${config.server.port}`)
})
Best Practices
- Use Config.withDefault for optional values - Avoid runtime errors
- Use Config.redacted for secrets - Prevents accidental logging
- Use Config.nested for structure - Organizes related config
- Validate with Schema - Catch invalid config early
- Test with mock providers - Deterministic tests
Additional Resources
For comprehensive configuration documentation, consult ${CLAUDE_PLUGIN_ROOT}/references/llms-full.txt.
Search for these sections:
- "Configuration" for full API reference
- "ConfigProvider" for custom providers
- "Handling Sensitive Values" for security
GitHub Repository
Related Skills
algorithmic-art
MetaThis Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.
subagent-driven-development
DevelopmentThis skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.
executing-plans
DesignUse the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.
cost-optimization
OtherThis Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.
