Back to Skills

engineering-features-for-machine-learning

jeremylongshore
Updated Today
90 views
918
111
918
View on GitHub
Metaai

About

This skill enables Claude to automate feature engineering for ML models, including creating, selecting, and transforming features to improve performance. It activates when users request tasks like feature selection or transformation using related trigger terms. Developers can use it to leverage tools like Bash and Grep for direct data manipulation within the feature engineering process.

Documentation

Overview

This skill enables Claude to leverage the feature-engineering-toolkit plugin to enhance machine learning models. It automates the process of creating new features, selecting the most relevant ones, and transforming existing features to better suit the model's needs. By using this skill, you can improve the accuracy, efficiency, and interpretability of your machine learning models.

How It Works

  1. Analyzing Requirements: Claude analyzes the user's request and identifies the specific feature engineering task required.
  2. Generating Code: Claude generates Python code using the feature-engineering-toolkit plugin to perform the requested task. This includes data validation and error handling.
  3. Executing Task: The generated code is executed, creating, selecting, or transforming features as requested.
  4. Providing Insights: Claude provides performance metrics and insights related to the feature engineering process, such as the importance of newly created features or the impact of transformations on model performance.

When to Use This Skill

This skill activates when you need to:

  • Create new features from existing data to improve model accuracy.
  • Select the most relevant features from a dataset to reduce model complexity and improve efficiency.
  • Transform features to better suit the assumptions of a machine learning model (e.g., scaling, normalization, encoding).

Examples

Example 1: Improving Model Accuracy

User request: "Create new features from the existing 'age' and 'income' columns to improve the accuracy of a customer churn prediction model."

The skill will:

  1. Generate code to create interaction terms between 'age' and 'income' (e.g., age * income, age / income).
  2. Execute the code and evaluate the impact of the new features on model performance.

Example 2: Reducing Model Complexity

User request: "Select the top 10 most important features from the dataset to reduce the complexity of a fraud detection model."

The skill will:

  1. Generate code to calculate feature importance using a suitable method (e.g., Random Forest, SelectKBest).
  2. Execute the code and select the top 10 features based on their importance scores.

Best Practices

  • Data Validation: Always validate the input data to ensure it is clean and consistent before performing feature engineering.
  • Feature Scaling: Scale numerical features to prevent features with larger ranges from dominating the model.
  • Encoding Categorical Features: Encode categorical features appropriately (e.g., one-hot encoding, label encoding) to make them suitable for machine learning models.

Integration

This skill integrates with the feature-engineering-toolkit plugin, providing a seamless way to create, select, and transform features for machine learning models. It can be used in conjunction with other Claude Code skills to build complete machine learning pipelines.

Quick Install

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skills/tree/main/feature-engineering-toolkit

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

jeremylongshore/claude-code-plugins-plus-skills
Path: backups/skill-structure-cleanup-20251108-073936/plugins/ai-ml/feature-engineering-toolkit/skills/feature-engineering-toolkit
aiautomationclaude-codedevopsmarketplacemcp

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill