Back to Skills

ray-data

zechenzhangAGI
Updated 2 days ago
27 views
62
2
62
View on GitHub
Otheraidata

About

Ray Data provides scalable distributed data processing for ML workloads, supporting streaming execution across CPU/GPU and multiple file formats like Parquet, CSV, JSON, and images. It integrates seamlessly with ML frameworks such as Ray Train, PyTorch, and TensorFlow. Use it for large-scale data preprocessing, batch inference, multi-modal data loading, or distributed ETL pipelines that need to scale from a single machine to hundreds of nodes.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs
Git CloneAlternative
git clone https://github.com/zechenzhangAGI/AI-research-SKILLs.git ~/.claude/skills/ray-data

Copy and paste this command in Claude Code to install this skill

Documentation

Ray Data - Scalable ML Data Processing

Distributed data processing library for ML and AI workloads.

When to use Ray Data

Use Ray Data when:

  • Processing large datasets (>100GB) for ML training
  • Need distributed data preprocessing across cluster
  • Building batch inference pipelines
  • Loading multi-modal data (images, audio, video)
  • Scaling data processing from laptop to cluster

Key features:

  • Streaming execution: Process data larger than memory
  • GPU support: Accelerate transforms with GPUs
  • Framework integration: PyTorch, TensorFlow, HuggingFace
  • Multi-modal: Images, Parquet, CSV, JSON, audio, video

Use alternatives instead:

  • Pandas: Small data (<1GB) on single machine
  • Dask: Tabular data, SQL-like operations
  • Spark: Enterprise ETL, SQL queries

Quick start

Installation

pip install -U 'ray[data]'

Load and transform data

import ray

# Read Parquet files
ds = ray.data.read_parquet("s3://bucket/data/*.parquet")

# Transform data (lazy execution)
ds = ds.map_batches(lambda batch: {"processed": batch["text"].str.lower()})

# Consume data
for batch in ds.iter_batches(batch_size=100):
    print(batch)

Integration with Ray Train

import ray
from ray.train import ScalingConfig
from ray.train.torch import TorchTrainer

# Create dataset
train_ds = ray.data.read_parquet("s3://bucket/train/*.parquet")

def train_func(config):
    # Access dataset in training
    train_ds = ray.train.get_dataset_shard("train")

    for epoch in range(10):
        for batch in train_ds.iter_batches(batch_size=32):
            # Train on batch
            pass

# Train with Ray
trainer = TorchTrainer(
    train_func,
    datasets={"train": train_ds},
    scaling_config=ScalingConfig(num_workers=4, use_gpu=True)
)
trainer.fit()

Reading data

From cloud storage

import ray

# Parquet (recommended for ML)
ds = ray.data.read_parquet("s3://bucket/data/*.parquet")

# CSV
ds = ray.data.read_csv("s3://bucket/data/*.csv")

# JSON
ds = ray.data.read_json("gs://bucket/data/*.json")

# Images
ds = ray.data.read_images("s3://bucket/images/")

From Python objects

# From list
ds = ray.data.from_items([{"id": i, "value": i * 2} for i in range(1000)])

# From range
ds = ray.data.range(1000000)  # Synthetic data

# From pandas
import pandas as pd
df = pd.DataFrame({"col1": [1, 2, 3], "col2": [4, 5, 6]})
ds = ray.data.from_pandas(df)

Transformations

Map batches (vectorized)

# Batch transformation (fast)
def process_batch(batch):
    batch["doubled"] = batch["value"] * 2
    return batch

ds = ds.map_batches(process_batch, batch_size=1000)

Row transformations

# Row-by-row (slower)
def process_row(row):
    row["squared"] = row["value"] ** 2
    return row

ds = ds.map(process_row)

Filter

# Filter rows
ds = ds.filter(lambda row: row["value"] > 100)

Group by and aggregate

# Group by column
ds = ds.groupby("category").count()

# Custom aggregation
ds = ds.groupby("category").map_groups(lambda group: {"sum": group["value"].sum()})

GPU-accelerated transforms

# Use GPU for preprocessing
def preprocess_images_gpu(batch):
    import torch
    images = torch.tensor(batch["image"]).cuda()
    # GPU preprocessing
    processed = images * 255
    return {"processed": processed.cpu().numpy()}

ds = ds.map_batches(
    preprocess_images_gpu,
    batch_size=64,
    num_gpus=1  # Request GPU
)

Writing data

# Write to Parquet
ds.write_parquet("s3://bucket/output/")

# Write to CSV
ds.write_csv("output/")

# Write to JSON
ds.write_json("output/")

Performance optimization

Repartition

# Control parallelism
ds = ds.repartition(100)  # 100 blocks for 100-core cluster

Batch size tuning

# Larger batches = faster vectorized ops
ds.map_batches(process_fn, batch_size=10000)  # vs batch_size=100

Streaming execution

# Process data larger than memory
ds = ray.data.read_parquet("s3://huge-dataset/")
for batch in ds.iter_batches(batch_size=1000):
    process(batch)  # Streamed, not loaded to memory

Common patterns

Batch inference

import ray

# Load model
def load_model():
    # Load once per worker
    return MyModel()

# Inference function
class BatchInference:
    def __init__(self):
        self.model = load_model()

    def __call__(self, batch):
        predictions = self.model(batch["input"])
        return {"prediction": predictions}

# Run distributed inference
ds = ray.data.read_parquet("s3://data/")
predictions = ds.map_batches(BatchInference, batch_size=32, num_gpus=1)
predictions.write_parquet("s3://output/")

Data preprocessing pipeline

# Multi-step pipeline
ds = (
    ray.data.read_parquet("s3://raw/")
    .map_batches(clean_data)
    .map_batches(tokenize)
    .map_batches(augment)
    .write_parquet("s3://processed/")
)

Integration with ML frameworks

PyTorch

# Convert to PyTorch
torch_ds = ds.to_torch(label_column="label", batch_size=32)

for batch in torch_ds:
    # batch is dict with tensors
    inputs, labels = batch["features"], batch["label"]

TensorFlow

# Convert to TensorFlow
tf_ds = ds.to_tf(feature_columns=["image"], label_column="label", batch_size=32)

for features, labels in tf_ds:
    # Train model
    pass

Supported data formats

FormatReadWriteUse Case
ParquetML data (recommended)
CSVTabular data
JSONSemi-structured
ImagesComputer vision
NumPyArrays
PandasDataFrames

Performance benchmarks

Scaling (processing 100GB data):

  • 1 node (16 cores): ~30 minutes
  • 4 nodes (64 cores): ~8 minutes
  • 16 nodes (256 cores): ~2 minutes

GPU acceleration (image preprocessing):

  • CPU only: 1,000 images/sec
  • 1 GPU: 5,000 images/sec
  • 4 GPUs: 18,000 images/sec

Use cases

Production deployments:

  • Pinterest: Last-mile data processing for model training
  • ByteDance: Scaling offline inference with multi-modal LLMs
  • Spotify: ML platform for batch inference

References

Resources

GitHub Repository

zechenzhangAGI/AI-research-SKILLs
Path: 05-data-processing/ray-data
aiai-researchclaudeclaude-codeclaude-skillscodex

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill