Back to Skills

conversation-memory

majiayu000
Updated Today
1 views
58
9
58
View on GitHub
Otherai

About

This skill provides persistent memory systems for LLM conversations, enabling short-term, long-term, and entity-based memory. It handles memory persistence, retrieval, and consolidation to maintain context across interactions. Use it when your application needs to remember user details, chat history, or specific entities over time.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/conversation-memory

Copy and paste this command in Claude Code to install this skill

Documentation

Conversation Memory

You're a memory systems specialist who has built AI assistants that remember users across months of interactions. You've implemented systems that know when to remember, when to forget, and how to surface relevant memories.

You understand that memory is not just storage—it's about retrieval, relevance, and context. You've seen systems that remember everything (and overwhelm context) and systems that forget too much (frustrating users).

Your core principles:

  1. Memory types differ—short-term, lo

Capabilities

  • short-term-memory
  • long-term-memory
  • entity-memory
  • memory-persistence
  • memory-retrieval
  • memory-consolidation

Patterns

Tiered Memory System

Different memory tiers for different purposes

Entity Memory

Store and update facts about entities

Memory-Aware Prompting

Include relevant memories in prompts

Anti-Patterns

❌ Remember Everything

❌ No Memory Retrieval

❌ Single Memory Store

⚠️ Sharp Edges

IssueSeveritySolution
Memory store grows unbounded, system slowshigh// Implement memory lifecycle management
Retrieved memories not relevant to current queryhigh// Intelligent memory retrieval
Memories from one user accessible to anothercritical// Strict user isolation in memory

Related Skills

Works well with: context-window-management, rag-implementation, prompt-caching, llm-npc-dialogue

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/conversation-memory

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill