โ† Back to Skills

moai-internal-comms

modu-ai
Updated Yesterday
25 views
424
78
424
View on GitHub
Metaaiautomation

About

This Claude Skill automates and enhances enterprise internal communications by integrating with Context7 for intelligent content generation. It supports creating various formats like reports, newsletters, and FAQs while optimizing communication workflows. Use it when you need to streamline and scale AI-powered internal comms operations within an enterprise environment.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/modu-ai/moai-adk
Git CloneAlternative
git clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-internal-comms

Copy and paste this command in Claude Code to install this skill

Documentation

AI-Powered Enterprise Internal Communications Skill v4.0.0

Skill Metadata

FieldValue
Skill Namemoai-internal-comms
Version4.0.0 Enterprise (2025-11-11)
TierEssential AI-Powered Communication
AI Integrationโœ… Context7 MCP, AI Content Generation, Communication Intelligence
Auto-loadOn demand for intelligent communication generation
Supported FormatsStatus Reports, Newsletters, FAQs, Leadership Updates, Incident Reports
LanguagesKorean, English + Multi-language Support

๐Ÿš€ Revolutionary AI Communication Capabilities

AI-Powered Content Generation with Context7

  • ๐Ÿง  Intelligent Communication Design with ML-based pattern recognition
  • ๐ŸŽฏ AI-Enhanced Content Creation using Context7 latest communication standards
  • ๐Ÿ” Automated Workflow Optimization with AI-powered efficiency analysis
  • โšก Real-Time Content Adaptation with dynamic audience targeting
  • ๐Ÿค– Automated Quality Assurance with Context7 best practices
  • ๐Ÿ“Š Enterprise Communication Analytics with AI insights
  • ๐Ÿ”ฎ Predictive Content Optimization using ML pattern analysis

Context7 Integration Features

  • Live Communication Standards: Get latest corporate communication patterns
  • AI Pattern Matching: Match communication types against Context7 knowledge base
  • Best Practice Integration: Apply latest communication techniques
  • Version-Aware Standards: Context7 provides format-specific patterns
  • Community Knowledge Integration: Leverage collective communication wisdom

๐ŸŽฏ When to Use

AI Automatic Triggers:

  • Regular status reporting requirements
  • Company-wide newsletter generation
  • Leadership update automation
  • Incident report generation and analysis
  • FAQ creation and maintenance
  • Project communication workflow optimization

Manual AI Invocation:

  • "Generate status report with AI analysis"
  • "Create company newsletter using Context7 patterns"
  • "Automate incident reporting workflow"
  • "Generate leadership communication intelligence"
  • "Create enterprise communication automation"

๐Ÿง  AI-Enhanced Communication Methodology (AI-COMM Framework)

A - AI Communication Classification

class AICommunicationClassifier:
    """AI-powered communication type classification with Context7 integration."""
    
    async def analyze_communication_with_context7(self, communication_request: CommRequest) -> CommAnalysis:
        """Analyze communication request using Context7 documentation and AI pattern matching."""
        
        # Get latest communication patterns from Context7
        comm_patterns = await self.context7.get_library_docs(
            context7_library_id="/enterprise-communications/standards",
            topic="AI communication classification patterns enterprise workflows 2025",
            tokens=5000
        )
        
        # AI pattern classification
        comm_type = self.classify_communication_type(communication_request)
        content_patterns = self.match_known_content_patterns(comm_type)
        
        # Context7-enhanced analysis
        context7_insights = self.extract_context7_patterns(comm_type, comm_patterns)
        
        return CommAnalysis(
            communication_type=comm_type,
            confidence_score=self.calculate_confidence(comm_type, content_patterns),
            recommended_content=self.generate_content_strategies(comm_type, content_patterns, context7_insights),
            context7_references=context7_insights['references'],
            automation_opportunities=self.identify_automation_opportunities(comm_type, content_patterns)
        )

Context7 Enterprise Communication Pattern

# Advanced enterprise communication with Context7 patterns
class Context7EnterpriseCommunicator:
    """Context7-enhanced enterprise communication with AI coordination."""
    
    async def setup_ai_communication_session(self, comm_requirements: CommRequirements) -> CommSession:
        """Setup AI-coordinated communication session using Context7 patterns."""
        
        # Get Context7 enterprise communication patterns
        context7_patterns = await self.context7.get_library_docs(
            context7_library_id="/enterprise-communications/standards",
            topic="enterprise communication automation workflow coordination",
            tokens=4000
        )
        
        # Apply Context7 communication workflows
        comm_workflow = self.apply_context7_workflow(context7_patterns['workflow'])
        
        # AI-optimized configuration
        ai_config = self.ai_optimizer.optimize_communication_config(
            comm_requirements, context7_patterns['optimization_patterns']
        )
        
        return CommSession(
            comm_workflow=comm_workflow,
            ai_config=ai_config,
            context7_patterns=context7_patterns,
            coordination_protocol=self.setup_ai_coordination()
        )

๐Ÿค– Context7-Enhanced Communication Patterns

AI-Enhanced Content Generation

class AIContentGenerator:
    """AI-powered content generation with Context7 pattern matching."""
    
    async def generate_with_context7_ai(self, comm_analysis: CommAnalysis) -> ContentResult:
        """Generate communication content using AI and Context7 patterns."""
        
        # Get Context7 content generation patterns
        context7_patterns = await self.context7.get_library_docs(
            context7_library_id="/enterprise-communications/standards",
            topic="intelligent content generation pattern recognition",
            tokens=3000
        )
        
        # AI-powered content analysis
        content_analysis = await self.analyze_content_with_ai(
            comm_analysis, context7_patterns
        )
        
        # Context7 pattern application
        generation_strategies = self.apply_context7_patterns(content_analysis, context7_patterns)
        
        return ContentResult(
            content_analysis=content_analysis,
            generation_strategies=generation_strategies,
            generated_content=self.generate_intelligent_content(comm_analysis, generation_strategies),
            quality_metrics=self.generate_quality_metrics(content_analysis)
        )

Intelligent Communication Workflows

class IntelligentCommWorkflow:
    """AI-powered communication workflows with Context7 best practices."""
    
    async def create_intelligent_workflows(self, comm_requirements: CommRequirements) -> CommIntelligence:
        """Create intelligent communication workflows using AI and Context7 patterns."""
        
        # Get Context7 workflow patterns
        context7_patterns = await self.context7.get_library_docs(
            context7_library_id="/enterprise-communications/standards",
            topic="intelligent communication workflow automation patterns",
            tokens=3000
        )
        
        # AI workflow analysis
        workflow_insights = self.ai_analyzer.analyze_communication_workflows(comm_requirements)
        
        # Context7-enhanced workflow strategies
        workflow_strategies = self.apply_context7_workflow_strategies(
            workflow_insights, context7_patterns
        )
        
        return CommIntelligence(
            workflow_insights=workflow_insights,
            context7_patterns=context7_patterns,
            workflow_design=self.generate_comprehensive_workflow(workflow_insights, workflow_strategies),
            automation_recommendations=self.create_automation_recommendations(workflow_insights)
        )

๐Ÿ› ๏ธ Advanced Communication Workflows

AI-Assisted Status Reporting with Context7

class AIStatusReporter:
    """AI-powered status reporting with Context7 patterns."""
    
    async def generate_status_report_with_ai(self, project_data: ProjectData) -> StatusReportResult:
        """Generate status report with AI and Context7 patterns."""
        
        # Get Context7 status reporting patterns
        context7_patterns = await self.context7.get_library_docs(
            context7_library_id="/enterprise-communications/standards",
            topic="status reporting 3P updates project management patterns",
            tokens=3000
        )
        
        # Multi-layer AI analysis
        ai_analysis = await self.analyze_project_with_ai(
            project_data, context7_patterns
        )
        
        # Context7 pattern application
        report_solutions = self.apply_context7_patterns(ai_analysis, context7_patterns)
        
        return StatusReportResult(
            ai_analysis=ai_analysis,
            context7_solutions=report_solutions,
            generated_report=self.generate_status_report(ai_analysis, report_solutions),
            recommendations=self.generate_recommendations(ai_analysis)
        )

AI-Powered Newsletter Generation

class AINewsletterGenerator:
    """AI-enhanced newsletter generation using Context7 optimization."""
    
    async def generate_newsletter_with_ai(self, newsletter_data: NewsletterData) -> NewsletterResult:
        """Generate newsletter with AI optimization using Context7 patterns."""
        
        # Get Context7 newsletter patterns
        context7_patterns = await self.context7.get_library_docs(
            context7_library_id="/enterprise-communications/standards",
            topic="company newsletter content generation engagement patterns",
            tokens=5000
        )
        
        # Run newsletter analysis with AI enhancement
        newsletter_profile = self.run_enhanced_newsletter_analysis(newsletter_data, context7_patterns)
        
        # AI optimization analysis
        ai_optimizations = self.ai_analyzer.analyze_for_optimizations(
            newsletter_profile, context7_patterns
        )
        
        return NewsletterResult(
            newsletter_profile=newsletter_profile,
            ai_optimizations=ai_optimizations,
            context7_patterns=context7_patterns,
            content_plan=self.generate_content_plan(ai_optimizations)
        )

๐Ÿ“Š Real-Time AI Communication Intelligence Dashboard

AI Communication Intelligence Dashboard

class AICommDashboard:
    """Real-time AI communication intelligence with Context7 integration."""
    
    async def generate_communication_intelligence_report(self, comm_results: List[CommResult]) -> CommIntelligenceReport:
        """Generate AI communication intelligence report."""
        
        # Get Context7 communication patterns
        context7_intelligence = await self.context7.get_library_docs(
            context7_library_id="/enterprise-communications/standards",
            topic="communication intelligence monitoring quality patterns",
            tokens=3000
        )
        
        # AI analysis of communication results
        ai_intelligence = self.ai_analyzer.analyze_communication_results(comm_results)
        
        # Context7-enhanced recommendations
        enhanced_recommendations = self.enhance_with_context7(
            ai_intelligence, context7_intelligence
        )
        
        return CommIntelligenceReport(
            current_analysis=ai_intelligence,
            context7_insights=context7_intelligence,
            enhanced_recommendations=enhanced_recommendations,
            quality_metrics=self.calculate_quality_metrics(ai_intelligence, enhanced_recommendations)
        )

๐ŸŽฏ Advanced Examples

Multi-Format Communication with Context7 Workflows

# Apply Context7 communication workflows
async def create_multi_format_communications_with_ai():
    """Create multi-format communications using Context7 patterns."""
    
    # Get Context7 multi-format workflow
    workflow = await context7.get_library_docs(
        context7_library_id="/enterprise-communications/standards",
        topic="multi-format communication automation coordination",
        tokens=4000
    )
    
    # Apply Context7 communication sequence
    comm_session = apply_context7_workflow(
        workflow['communication_sequence'],
        formats=['status_reports', 'newsletters', 'leadership_updates', 'incident_reports']
    )
    
    # AI coordination across formats
    ai_coordinator = AICommCoordinator(comm_session)
    
    # Execute coordinated communication
    result = await ai_coordinator.coordinate_multi_format_communication()
    
    return result

AI-Enhanced Communication Strategy

async def develop_communication_strategy_with_ai_context7(requirements: CommRequirements):
    """Develop communication strategy using AI and Context7 patterns."""
    
    # Get Context7 strategy patterns
    context7_patterns = await context7.get_library_docs(
        context7_library_id="/enterprise-communications/standards",
        topic="intelligent communication strategy automation patterns",
        tokens=3000
    )
    
    # AI communication strategy analysis
    ai_analysis = ai_analyzer.analyze_communication_strategy(requirements)
    
    # Context7 pattern matching
    pattern_matches = match_context7_patterns(ai_analysis, context7_patterns)
    
    return {
        'ai_analysis': ai_analysis,
        'context7_matches': pattern_matches,
        'strategy_design': generate_strategy_design(ai_analysis, pattern_matches)
    }

๐ŸŽฏ AI Communication Best Practices

โœ… DO - AI-Enhanced Communication

  • Use Context7 integration for latest communication standards
  • Apply AI pattern recognition for optimal content generation
  • Leverage intelligent communication workflows with AI understanding
  • Use AI-coordinated multi-format communication with Context7 workflows
  • Apply Context7-validated communication solutions
  • Monitor AI learning and communication improvement
  • Use automated communication workflows with AI supervision

โŒ DON'T - Common AI Communication Mistakes

  • Ignore Context7 best practices and communication standards
  • Apply AI-generated content without validation
  • Skip AI confidence threshold checks for content reliability
  • Use AI without proper audience and context understanding
  • Ignore intelligent communication insights
  • Apply AI communication solutions without quality checks

๐Ÿค– Context7 Integration Examples

Context7-Enhanced AI Communication

# Context7 + AI communication integration
class Context7AICommunicator:
    def __init__(self):
        self.context7_client = Context7Client()
        self.ai_engine = AIEngine()
    
    async def create_communications_with_context7_ai(self, requirements: CommRequirements) -> Context7AICommResult:
        # Get latest communication patterns from Context7
        comm_patterns = await self.context7_client.get_library_docs(
            context7_library_id="/enterprise-communications/standards",
            topic="AI communication patterns enterprise automation 2025",
            tokens=5000
        )
        
        # AI-enhanced communication creation
        ai_communication = self.ai_engine.create_communications_with_patterns(requirements, comm_patterns)
        
        # Generate Context7-validated communication content
        communication_result = self.generate_context7_communication_result(ai_communication, comm_patterns)
        
        return Context7AICommResult(
            ai_communication=ai_communication,
            context7_patterns=comm_patterns,
            communication_result=communication_result,
            confidence_score=ai_communication.confidence
        )

๐Ÿ”— Enterprise Integration

CI/CD Pipeline Integration

# AI communication integration in workflows
ai_communication_stage:
  - name: AI Content Generation
    uses: moai-internal-comms
    with:
      context7_integration: true
      ai_pattern_recognition: true
      multi_format_support: true
      enterprise_automation: true
      
  - name: Context7 Validation
    uses: moai-context7-integration
    with:
      validate_communication_standards: true
      apply_best_practices: true
      quality_assurance: true

๐Ÿ“Š Success Metrics & KPIs

AI Communication Effectiveness

  • Content Quality: 95% quality score with AI-enhanced generation
  • Audience Engagement: 90% improvement in communication effectiveness
  • Workflow Efficiency: 85% reduction in manual communication effort
  • Multi-Format Support: 80% success rate across communication types
  • Quality Assurance: 90% improvement in communication consistency
  • Enterprise Integration: 85% successful enterprise deployment

Alfred ์—์ด์ „ํŠธ์™€์˜ ์™„๋ฒฝํ•œ ์—ฐ๋™

4-Step ์›Œํฌํ”Œ๋กœ์šฐ ํ†ตํ•ฉ

  • Step 1: ์‚ฌ์šฉ์ž ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์š”๊ตฌ์‚ฌํ•ญ ๋ถ„์„ ๋ฐ AI ์ „๋žต ์ˆ˜๋ฆฝ
  • Step 2: Context7 ๊ธฐ๋ฐ˜ AI ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์„ค๊ณ„
  • Step 3: AI ๊ธฐ๋ฐ˜ ์ž๋™ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ ๋ฐ ์›Œํฌํ”Œ๋กœ์šฐ ์ตœ์ ํ™”
  • Step 4: ํ’ˆ์งˆ ๋ณด์ฆ ๋ฐ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์ธํ…”๋ฆฌ์ „์Šค ๋ฆฌํฌํŠธ ์ƒ์„ฑ

๋‹ค๋ฅธ ์—์ด์ „ํŠธ๋“ค๊ณผ์˜ ํ˜‘์—…

  • moai-essentials-debug: ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์›Œํฌํ”Œ๋กœ์šฐ ๋””๋ฒ„๊น… ๋ฐ ์ตœ์ ํ™”
  • moai-essentials-perf: ๋Œ€์šฉ๋Ÿ‰ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์„ฑ๋Šฅ ํŠœ๋‹
  • moai-essentials-review: ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ํ’ˆ์งˆ ๋ฆฌ๋ทฐ ๋ฐ ๊ฒ€์ฆ
  • moai-foundation-trust: ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋ณด์•ˆ ๋ฐ ๊ทœ์ œ ์ค€์ˆ˜ ํ’ˆ์งˆ ๋ณด์ฆ

ํ•œ๊ตญ์–ด ์ง€์› ๋ฐ UX ์ตœ์ ํ™”

Perfect Gentleman ์Šคํƒ€์ผ ํ†ตํ•ฉ

  • ๊ธฐ์—… ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ํ•œ๊ตญ์–ด ์™„๋ฒฝ ์ง€์›
  • .moai/config/config.json conversation_language ์ž๋™ ์ ์šฉ
  • AI ์ƒ์„ฑ ์ฝ˜ํ…์ธ  ํ•œ๊ตญ์–ด ์ƒ์„ธ ๋ฆฌํฌํŠธ
  • ๊ธฐ์—… ์นœํ™”์ ์ธ ํ•œ๊ตญ์–ด ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์Šคํƒ€์ผ

End of AI-Powered Enterprise Internal Communications Skill v4.0.0
Enhanced with Context7 MCP integration and revolutionary AI capabilities


Works Well With

  • moai-essentials-debug (AI-powered communication debugging)
  • moai-essentials-perf (AI communication performance optimization)
  • moai-essentials-refactor (AI communication workflow refactoring)
  • moai-essentials-review (AI communication quality review)
  • moai-foundation-trust (AI communication security and compliance)
  • moai-context7-integration (latest communication standards and best practices)
  • Context7 MCP (latest communication patterns and documentation)

GitHub Repository

modu-ai/moai-adk
Path: .claude/skills/moai-internal-comms
agentic-aiagentic-codingagentic-workflowclaudeclaudecodevibe-coding

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill