Back to Skills

detecting-performance-regressions

jeremylongshore
Updated Yesterday
18 views
712
74
712
View on GitHub
Metaaiautomationdesign

About

This skill automatically detects performance regressions in CI/CD pipelines by comparing current metrics against established baselines. It's designed for developers to validate builds and analyze performance trends, using methods like statistical analysis and threshold checks. Trigger it with phrases like "detect performance regression" or "analyze performance degradation" to identify potential bottlenecks.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git CloneAlternative
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/detecting-performance-regressions

Copy and paste this command in Claude Code to install this skill

Documentation

Overview

This skill automates the detection of performance regressions within a CI/CD pipeline. It utilizes various methods, including baseline comparison, statistical analysis, and threshold violation checks, to identify performance degradation. The skill provides insights into potential performance bottlenecks and helps maintain application performance.

How It Works

  1. Analyze Performance Data: The plugin gathers performance metrics from the CI/CD environment.
  2. Detect Regressions: It employs methods like baseline comparison, statistical analysis, and threshold checks to detect regressions.
  3. Report Findings: The plugin generates a report summarizing the detected performance regressions and their potential impact.

When to Use This Skill

This skill activates when you need to:

  • Identify performance regressions in a CI/CD pipeline.
  • Analyze performance metrics for potential degradation.
  • Compare current performance against historical baselines.

Examples

Example 1: Identifying a Response Time Regression

User request: "Detect performance regressions in the latest build. Specifically, check for increases in response time."

The skill will:

  1. Analyze response time metrics from the latest build.
  2. Compare the response times against a historical baseline.
  3. Report any statistically significant increases in response time that exceed a defined threshold.

Example 2: Detecting Throughput Degradation

User request: "Analyze throughput for performance regressions after the recent code merge."

The skill will:

  1. Gather throughput data (requests per second) from the post-merge CI/CD run.
  2. Compare the throughput to pre-merge values, looking for statistically significant drops.
  3. Generate a report highlighting any throughput degradation, indicating a potential performance regression.

Best Practices

  • Define Baselines: Establish clear and representative performance baselines for accurate comparison.
  • Set Thresholds: Configure appropriate thresholds for identifying significant performance regressions.
  • Monitor Key Metrics: Focus on monitoring critical performance metrics relevant to the application's behavior.

Integration

This skill can be integrated with other CI/CD tools to automatically trigger regression detection upon new builds or code merges. It can also be combined with reporting plugins to generate detailed performance reports.

Prerequisites

  • Historical performance baselines in {baseDir}/performance/baselines/
  • Access to CI/CD performance metrics
  • Statistical analysis tools
  • Defined regression thresholds

Instructions

  1. Collect performance metrics from current build
  2. Load historical baseline data
  3. Apply statistical analysis to detect significant changes
  4. Check for threshold violations
  5. Identify specific regressed metrics
  6. Generate regression report with root cause analysis

Output

  • Performance regression detection report
  • Statistical comparison with baselines
  • List of regressed metrics with severity
  • Visualization of performance trends
  • Recommendations for investigation

Error Handling

If regression detection fails:

  • Verify baseline data availability
  • Check metrics collection configuration
  • Validate statistical analysis parameters
  • Ensure threshold definitions are valid
  • Review CI/CD integration setup

Resources

  • Statistical process control for performance testing
  • CI/CD performance testing best practices
  • Regression detection algorithms
  • Performance monitoring strategies

GitHub Repository

jeremylongshore/claude-code-plugins-plus
Path: plugins/performance/performance-regression-detector/skills/performance-regression-detector
aiautomationclaude-codedevopsmarketplacemcp

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill