Model Hyperparameter Tuning
About
This skill enables systematic hyperparameter optimization using methods like grid search, random search, and Bayesian optimization with frameworks such as Optuna and Hyperopt. It supports various tuning strategies for different model types including neural networks, tree models, and SVMs. Use this to automatically find optimal model configurations that maximize validation performance.
Documentation
Model Hyperparameter Tuning
Hyperparameter tuning is the process of systematically searching for the best combination of model configuration parameters to maximize performance on validation data.
Tuning Methods
- Grid Search: Exhaustive search over parameter grid
- Random Search: Random sampling from parameter space
- Bayesian Optimization: Probabilistic model-based search
- Hyperband: Multi-fidelity optimization
- Evolutionary Algorithms: Genetic algorithm based search
- Population-based Training: Distributed parameter optimization
Hyperparameters by Model Type
- Tree Models: max_depth, min_samples_split, learning_rate
- Neural Networks: learning_rate, batch_size, num_layers, dropout
- SVM: C, kernel, gamma
- Ensemble: n_estimators, max_features, min_samples_leaf
Python Implementation
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
import optuna
from optuna.samplers import TPESampler
import torch
import torch.nn as nn
from torch.optim import Adam
import time
# Create dataset
X, y = make_classification(n_samples=2000, n_features=50, n_informative=30,
n_redundant=10, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
print("Dataset shapes:", X_train_scaled.shape, X_test_scaled.shape)
# 1. Grid Search
print("\n=== 1. Grid Search ===")
start = time.time()
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [5, 10, 15],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
grid_search = GridSearchCV(
RandomForestClassifier(random_state=42),
param_grid,
cv=5,
scoring='accuracy',
n_jobs=-1,
verbose=0
)
grid_search.fit(X_train_scaled, y_train)
grid_time = time.time() - start
print(f"Best parameters: {grid_search.best_params_}")
print(f"Best CV score: {grid_search.best_score_:.4f}")
print(f"Test score: {grid_search.score(X_test_scaled, y_test):.4f}")
print(f"Time taken: {grid_time:.2f}s")
# 2. Random Search
print("\n=== 2. Random Search ===")
start = time.time()
param_dist = {
'n_estimators': np.arange(50, 300, 10),
'max_depth': np.arange(5, 30, 1),
'min_samples_split': np.arange(2, 20, 1),
'min_samples_leaf': np.arange(1, 10, 1),
'max_features': ['sqrt', 'log2']
}
random_search = RandomizedSearchCV(
RandomForestClassifier(random_state=42),
param_dist,
n_iter=20,
cv=5,
scoring='accuracy',
n_jobs=-1,
random_state=42,
verbose=0
)
random_search.fit(X_train_scaled, y_train)
random_time = time.time() - start
print(f"Best parameters: {random_search.best_params_}")
print(f"Best CV score: {random_search.best_score_:.4f}")
print(f"Test score: {random_search.score(X_test_scaled, y_test):.4f}")
print(f"Time taken: {random_time:.2f}s")
# 3. Bayesian Optimization with Optuna
print("\n=== 3. Bayesian Optimization (Optuna) ===")
def objective(trial):
params = {
'n_estimators': trial.suggest_int('n_estimators', 50, 300),
'max_depth': trial.suggest_int('max_depth', 5, 30),
'min_samples_split': trial.suggest_int('min_samples_split', 2, 20),
'min_samples_leaf': trial.suggest_int('min_samples_leaf', 1, 10),
'max_features': trial.suggest_categorical('max_features', ['sqrt', 'log2'])
}
model = RandomForestClassifier(**params, random_state=42)
scores = cross_val_score(model, X_train_scaled, y_train, cv=5, scoring='accuracy')
return scores.mean()
start = time.time()
sampler = TPESampler(seed=42)
study = optuna.create_study(sampler=sampler, direction='maximize')
study.optimize(objective, n_trials=20, show_progress_bar=False)
optuna_time = time.time() - start
best_trial = study.best_trial
print(f"Best parameters: {best_trial.params}")
print(f"Best CV score: {best_trial.value:.4f}")
# Train final model with best params
best_model = RandomForestClassifier(**best_trial.params, random_state=42)
best_model.fit(X_train_scaled, y_train)
print(f"Test score: {best_model.score(X_test_scaled, y_test):.4f}")
print(f"Time taken: {optuna_time:.2f}s")
# 4. Gradient Boosting hyperparameter tuning
print("\n=== 4. Gradient Boosting Tuning ===")
gb_param_grid = {
'learning_rate': [0.01, 0.05, 0.1, 0.2],
'n_estimators': [100, 200, 300],
'max_depth': [3, 5, 7, 9],
'min_samples_split': [2, 5, 10],
'subsample': [0.8, 0.9, 1.0]
}
gb_search = GridSearchCV(
GradientBoostingClassifier(random_state=42),
gb_param_grid,
cv=5,
scoring='accuracy',
n_jobs=-1,
verbose=0
)
gb_search.fit(X_train_scaled, y_train)
print(f"Best parameters: {gb_search.best_params_}")
print(f"Best CV score: {gb_search.best_score_:.4f}")
print(f"Test score: {gb_search.score(X_test_scaled, y_test):.4f}")
# 5. Learning rate tuning for neural networks
print("\n=== 5. Learning Rate Tuning for Neural Networks ===")
class SimpleNN(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(50, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 1)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.3)
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.dropout(x)
x = self.relu(self.fc2(x))
x = self.dropout(x)
x = torch.sigmoid(self.fc3(x))
return x
learning_rates = [0.0001, 0.001, 0.01, 0.1]
lr_results = {}
device = torch.device('cpu')
for lr in learning_rates:
model = SimpleNN().to(device)
optimizer = Adam(model.parameters(), lr=lr)
criterion = nn.BCELoss()
X_train_tensor = torch.FloatTensor(X_train_scaled)
y_train_tensor = torch.FloatTensor(y_train).unsqueeze(1)
best_loss = float('inf')
patience = 10
patience_counter = 0
for epoch in range(100):
output = model(X_train_tensor)
loss = criterion(output, y_train_tensor)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if loss.item() < best_loss:
best_loss = loss.item()
patience_counter = 0
else:
patience_counter += 1
if patience_counter >= patience:
break
lr_results[lr] = best_loss
print(f"Learning Rate {lr}: Best Loss = {best_loss:.6f}")
# 6. Comparison visualization
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
# Search method comparison
methods = ['Grid Search', 'Random Search', 'Bayesian Opt']
times = [grid_time, random_time, optuna_time]
scores = [grid_search.best_score_, random_search.best_score_, study.best_value]
x = np.arange(len(methods))
axes[0, 0].bar(x, times, color='steelblue', alpha=0.7)
axes[0, 0].set_ylabel('Time (seconds)')
axes[0, 0].set_title('Tuning Method Comparison - Time')
axes[0, 0].set_xticks(x)
axes[0, 0].set_xticklabels(methods)
axes[0, 1].bar(x, scores, color='coral', alpha=0.7)
axes[0, 1].set_ylabel('CV Accuracy')
axes[0, 1].set_title('Tuning Method Comparison - Accuracy')
axes[0, 1].set_xticks(x)
axes[0, 1].set_xticklabels(methods)
axes[0, 1].set_ylim([0.8, 1.0])
# Hyperparameter importance from Optuna
importance_dict = {}
for param_name in study.best_trial.params.keys():
trial_values = []
for trial in study.trials:
if param_name in trial.params:
trial_values.append(trial.value)
if trial_values:
importance_dict[param_name] = np.std(trial_values)
axes[1, 0].barh(list(importance_dict.keys()), list(importance_dict.values()),
color='lightgreen', edgecolor='black')
axes[1, 0].set_xlabel('Importance (Std Dev)')
axes[1, 0].set_title('Hyperparameter Importance')
# Learning rate tuning for NN
axes[1, 1].plot(list(lr_results.keys()), list(lr_results.values()), marker='o',
linewidth=2, markersize=8, color='purple')
axes[1, 1].set_xlabel('Learning Rate')
axes[1, 1].set_ylabel('Best Training Loss')
axes[1, 1].set_title('Learning Rate Impact on Neural Network')
axes[1, 1].set_xscale('log')
axes[1, 1].grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('hyperparameter_tuning.png', dpi=100, bbox_inches='tight')
print("\nVisualization saved as 'hyperparameter_tuning.png'")
print("\nHyperparameter tuning completed!")
Tuning Strategy by Model
- Tree Models: Focus on depth, min_samples, max_features
- Boosting: Learning_rate, n_estimators, subsample
- Neural Networks: Learning rate, batch size, regularization
- SVM: C and kernel type are most important
Best Practices
- Scale search space logarithmically for continuous parameters
- Use cross-validation for robust estimates
- Start with random search for initial exploration
- Use Bayesian optimization for final refinement
- Monitor for diminishing returns
Deliverables
- Optimal hyperparameters found
- Performance metrics for top configurations
- Tuning efficiency analysis
- Visualization of parameter impact
- Tuning report and recommendations
Quick Install
/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/model-hyperparameter-tuningCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
Algorithmic Art Generation
MetaThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
business-rule-documentation
MetaThis skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.
huggingface-accelerate
DevelopmentHuggingFace Accelerate provides the simplest API for adding distributed training to PyTorch scripts with just 4 lines of code. It offers a unified interface for multiple distributed training frameworks like DeepSpeed, FSDP, and DDP while handling automatic device placement and mixed precision. This makes it ideal for developers who want to quickly scale their PyTorch training across multiple GPUs or nodes without complex configuration.
