Back to Skills

bio-consensus-sequences

majiayu000
Updated Today
1 views
58
9
58
View on GitHub
Metageneral

About

This skill generates consensus FASTA sequences by applying VCF variants to a reference genome using bcftools consensus. It's used for creating sample-specific reference sequences or reconstructing haplotypes from variant data. Key features include specifying samples, outputting to files, and selecting individual haplotypes for analysis.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/bio-consensus-sequences

Copy and paste this command in Claude Code to install this skill

Documentation

Consensus Sequences

Apply variants to reference FASTA using bcftools consensus.

Basic Usage

Generate Consensus

bcftools consensus -f reference.fa input.vcf.gz > consensus.fa

Specify Sample

bcftools consensus -f reference.fa -s sample1 input.vcf.gz > sample1.fa

Output to File

bcftools consensus -f reference.fa -o consensus.fa input.vcf.gz

Haplotype Selection

First Haplotype Only

bcftools consensus -f reference.fa -H 1 input.vcf.gz > haplotype1.fa

Second Haplotype Only

bcftools consensus -f reference.fa -H 2 input.vcf.gz > haplotype2.fa

Haplotype Options

OptionDescription
-H 1First haplotype
-H 2Second haplotype
-H AApply all ALT alleles
-H RApply REF alleles where heterozygous
-IApply IUPAC ambiguity codes (separate flag)

IUPAC Codes for Heterozygous Sites

bcftools consensus -f reference.fa -I input.vcf.gz > consensus_iupac.fa

Heterozygous sites encoded with IUPAC ambiguity codes:

  • A/G → R
  • C/T → Y
  • A/C → M
  • G/T → K
  • A/T → W
  • C/G → S

Missing Data Handling

Mark Missing as N

bcftools consensus -f reference.fa -M N input.vcf.gz > consensus.fa

Mark Low Coverage as N

Using a mask BED file:

# Create mask from depth
samtools depth input.bam | awk '$3<10 {print $1"\t"$2-1"\t"$2}' > low_coverage.bed

# Apply mask
bcftools consensus -f reference.fa -m low_coverage.bed input.vcf.gz > consensus.fa

Mask Options

OptionDescription
-m FILEMask regions in BED file with N
-M CHARCharacter for masked regions (default N)

Region Selection

Specific Region

bcftools consensus -f reference.fa -r chr1:1000-2000 input.vcf.gz > region.fa

Multiple Regions

Use with BED file to extract multiple regions.

Chain Files

Generate Chain File

bcftools consensus -f reference.fa -c chain.txt input.vcf.gz > consensus.fa

Chain files map coordinates between reference and consensus:

  • Useful for liftover of annotations
  • Required when indels change sequence length

Chain File Format

chain score ref_name ref_size ref_strand ref_start ref_end query_name query_size query_strand query_start query_end id

Sample-Specific Consensus

For Each Sample

for sample in $(bcftools query -l input.vcf.gz); do
    bcftools consensus -f reference.fa -s "$sample" input.vcf.gz > "${sample}.fa"
done

Both Haplotypes

sample="sample1"
bcftools consensus -f reference.fa -s "$sample" -H 1 input.vcf.gz > "${sample}_hap1.fa"
bcftools consensus -f reference.fa -s "$sample" -H 2 input.vcf.gz > "${sample}_hap2.fa"

Filtering Before Consensus

PASS Variants Only

bcftools view -f PASS input.vcf.gz | \
    bcftools consensus -f reference.fa > consensus.fa

High-Quality Variants Only

bcftools filter -i 'QUAL>=30 && INFO/DP>=10' input.vcf.gz | \
    bcftools consensus -f reference.fa > consensus.fa

SNPs Only

bcftools view -v snps input.vcf.gz | \
    bcftools consensus -f reference.fa > consensus_snps.fa

Sequence Naming

Default Naming

Output uses reference sequence names.

Custom Prefix

bcftools consensus -f reference.fa -p "sample1_" input.vcf.gz > consensus.fa

Sequences named: sample1_chr1, sample1_chr2, etc.

Common Workflows

Phylogenetic Analysis Preparation

# For each sample, generate consensus
mkdir -p consensus
for sample in $(bcftools query -l cohort.vcf.gz); do
    bcftools view -s "$sample" cohort.vcf.gz | \
        bcftools view -c 1 | \
        bcftools consensus -f reference.fa > "consensus/${sample}.fa"
done

# Combine for alignment
cat consensus/*.fa > all_samples.fa

Viral Genome Assembly

# Apply high-quality variants only
bcftools filter -i 'QUAL>=30 && INFO/DP>=20' variants.vcf.gz | \
    bcftools view -f PASS | \
    bcftools consensus -f reference.fa -M N > consensus.fa

Gene-Specific Consensus

# Extract gene region
bcftools consensus -f reference.fa -r chr1:1000000-1010000 \
    -s sample1 variants.vcf.gz > gene.fa

Masked Low-Coverage Regions

# Create mask from coverage
samtools depth -a input.bam | \
    awk '$3<5 {print $1"\t"$2-1"\t"$2}' | \
    bedtools merge > low_coverage.bed

# Generate consensus with mask
bcftools consensus -f reference.fa -m low_coverage.bed \
    variants.vcf.gz > consensus.fa

Verify Consensus

Check Differences

# Align consensus to reference
minimap2 -a reference.fa consensus.fa | samtools view -bS > alignment.bam

# Or simple comparison
diff <(grep -v "^>" reference.fa) <(grep -v "^>" consensus.fa) | head

Count Changes

# Number of differences
bcftools view -H input.vcf.gz | wc -l

Handling Overlapping Variants

bcftools consensus handles overlapping variants automatically:

  • Applies variants in order
  • Warns about conflicts

Check for warnings:

bcftools consensus -f reference.fa input.vcf.gz 2>&1 | grep -i warn

cyvcf2 Consensus (Simple Cases)

Manual Consensus Generation

from cyvcf2 import VCF
from Bio import SeqIO

# Load reference
ref_dict = {rec.id: str(rec.seq) for rec in SeqIO.parse('reference.fa', 'fasta')}

# Apply variants (SNPs only, simplified)
vcf = VCF('input.vcf.gz')
changes = {}

for variant in vcf:
    if variant.is_snp and len(variant.ALT) == 1:
        chrom = variant.CHROM
        pos = variant.POS - 1  # 0-based
        if chrom not in changes:
            changes[chrom] = {}
        changes[chrom][pos] = variant.ALT[0]

# Apply changes
for chrom, positions in changes.items():
    seq = list(ref_dict[chrom])
    for pos, alt in positions.items():
        seq[pos] = alt
    ref_dict[chrom] = ''.join(seq)

# Write output
with open('consensus.fa', 'w') as f:
    for chrom, seq in ref_dict.items():
        f.write(f'>{chrom}\n{seq}\n')

Note: Use bcftools consensus for production - handles indels and edge cases properly.

Quick Reference

TaskCommand
Basic consensusbcftools consensus -f ref.fa in.vcf.gz
Specific samplebcftools consensus -f ref.fa -s sample in.vcf.gz
Haplotype 1bcftools consensus -f ref.fa -H 1 in.vcf.gz
IUPAC codesbcftools consensus -f ref.fa -I in.vcf.gz
With maskbcftools consensus -f ref.fa -m mask.bed in.vcf.gz
Generate chainbcftools consensus -f ref.fa -c chain.txt in.vcf.gz
Specific regionbcftools consensus -f ref.fa -r chr1:1-1000 in.vcf.gz

Common Errors

ErrorCauseSolution
not indexedVCF not indexedRun bcftools index
sequence not foundChromosome mismatchCheck chromosome names
overlapping recordsVariants overlapUsually OK, check warnings
REF does not matchWrong referenceUse same reference as caller

Related Skills

  • variant-calling - Generate VCF for consensus
  • vcf-filtering - Filter variants before consensus
  • variant-normalization - Normalize indels first
  • alignment-files/reference-operations - Reference manipulation

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/consensus-sequences

Related Skills

algorithmic-art

Meta

This Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.

View skill

subagent-driven-development

Development

This skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.

View skill

executing-plans

Design

Use the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.

View skill

cost-optimization

Other

This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.

View skill