Computer Vision
About
This skill enables developers to implement core computer vision tasks like image classification, object detection, and segmentation using PyTorch and TensorFlow. It provides guidance on popular architectures such as YOLO, ResNet, and U-Net for building applications in areas like autonomous driving and medical imaging. Use this skill when you need to add visual understanding capabilities to your projects.
Documentation
Computer Vision
Computer Vision enables machines to understand visual information from images and videos, powering applications like autonomous driving, medical imaging, and surveillance.
Computer Vision Tasks
- Image Classification: Categorizing images into classes
- Object Detection: Locating and classifying objects in images
- Semantic Segmentation: Pixel-level classification
- Instance Segmentation: Detecting individual object instances
- Pose Estimation: Identifying human body joints
- Face Recognition: Identifying individuals in images
Popular Architectures
- Classification: ResNet, VGG, EfficientNet, Vision Transformer
- Detection: YOLO, Faster R-CNN, SSD, RetinaNet
- Segmentation: U-Net, DeepLab, Mask R-CNN
- Pose: OpenPose, PoseNet, HRNet
Python Implementation
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image, ImageDraw
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset
from torchvision import transforms, models, datasets
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import cv2
from sklearn.metrics import accuracy_score, confusion_matrix
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
print("=== 1. Image Classification CNN ===")
# Define image classification model
class ImageClassifierCNN(nn.Module):
def __init__(self, num_classes=10):
super().__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.BatchNorm2d(32),
nn.MaxPool2d(2, 2),
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.BatchNorm2d(64),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.BatchNorm2d(128),
nn.MaxPool2d(2, 2),
)
self.classifier = nn.Sequential(
nn.Linear(128 * 4 * 4, 256),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(256, num_classes)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
model = ImageClassifierCNN(num_classes=10)
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
# 2. Object Detection setup
print("\n=== 2. Object Detection Framework ===")
class ObjectDetector(nn.Module):
def __init__(self):
super().__init__()
# Backbone
self.backbone = nn.Sequential(
nn.Conv2d(3, 32, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(32, 64, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2, 2),
)
# Bounding box regression
self.bbox_head = nn.Sequential(
nn.Linear(64 * 8 * 8, 128),
nn.ReLU(),
nn.Linear(128, 4) # x, y, w, h
)
# Class prediction
self.class_head = nn.Sequential(
nn.Linear(64 * 8 * 8, 128),
nn.ReLU(),
nn.Linear(128, 10) # 10 classes
)
def forward(self, x):
features = self.backbone(x)
features_flat = features.view(features.size(0), -1)
bboxes = self.bbox_head(features_flat)
classes = self.class_head(features_flat)
return bboxes, classes
detector = ObjectDetector()
print(f"Detector parameters: {sum(p.numel() for p in detector.parameters()):,}")
# 3. Semantic Segmentation
print("\n=== 3. Semantic Segmentation U-Net ===")
class UNet(nn.Module):
def __init__(self, num_classes=5):
super().__init__()
# Encoder
self.enc1 = self._conv_block(3, 32)
self.pool1 = nn.MaxPool2d(2, 2)
self.enc2 = self._conv_block(32, 64)
self.pool2 = nn.MaxPool2d(2, 2)
# Bottleneck
self.bottleneck = self._conv_block(64, 128)
# Decoder
self.upconv2 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.dec2 = self._conv_block(128, 64)
self.upconv1 = nn.ConvTranspose2d(64, 32, 2, stride=2)
self.dec1 = self._conv_block(64, 32)
# Final output
self.out = nn.Conv2d(32, num_classes, 1)
def _conv_block(self, in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 3, padding=1),
nn.ReLU(inplace=True)
)
def forward(self, x):
enc1 = self.enc1(x)
enc2 = self.enc2(self.pool1(enc1))
bottleneck = self.bottleneck(self.pool2(enc2))
dec2 = self.dec2(torch.cat([self.upconv2(bottleneck), enc2], 1))
dec1 = self.dec1(torch.cat([self.upconv1(dec2), enc1], 1))
return self.out(dec1)
unet = UNet(num_classes=5)
print(f"U-Net parameters: {sum(p.numel() for p in unet.parameters()):,}")
# 4. Transfer Learning
print("\n=== 4. Transfer Learning with Pre-trained Models ===")
try:
# Load pre-trained ResNet18
pretrained_model = models.resnet18(pretrained=True)
num_ftrs = pretrained_model.fc.in_features
pretrained_model.fc = nn.Linear(num_ftrs, 10)
print(f"Pre-trained ResNet18 adapted for 10 classes")
print(f"Parameters: {sum(p.numel() for p in pretrained_model.parameters()):,}")
except:
print("Pre-trained models not available")
# 5. Image preprocessing and augmentation
print("\n=== 5. Image Preprocessing and Augmentation ===")
transform_basic = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
transform_augmented = transforms.Compose([
transforms.RandomRotation(20),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2),
transforms.RandomAffine(degrees=0, translate=(0.1, 0.1)),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
print("Augmentation transforms defined")
# 6. Synthetic image data
print("\n=== 6. Synthetic Image Data Creation ===")
def create_synthetic_images(num_images=100, img_size=32):
"""Create synthetic images with shapes"""
images = []
labels = []
for _ in range(num_images):
img = np.ones((img_size, img_size, 3)) * 255
# Randomly draw shapes
shape_type = np.random.randint(0, 3)
if shape_type == 0: # Circle
center = (np.random.randint(5, img_size-5), np.random.randint(5, img_size-5))
radius = np.random.randint(3, 10)
cv2.circle(img, center, radius, (0, 0, 0), -1)
labels.append(0)
elif shape_type == 1: # Rectangle
pt1 = (np.random.randint(0, img_size-10), np.random.randint(0, img_size-10))
pt2 = (pt1[0] + np.random.randint(5, 15), pt1[1] + np.random.randint(5, 15))
cv2.rectangle(img, pt1, pt2, (0, 0, 0), -1)
labels.append(1)
else: # Triangle
pts = np.array([[np.random.randint(0, img_size), np.random.randint(0, img_size)],
[np.random.randint(0, img_size), np.random.randint(0, img_size)],
[np.random.randint(0, img_size), np.random.randint(0, img_size)]])
cv2.drawContours(img, [pts], 0, (0, 0, 0), -1)
labels.append(2)
images.append(img.astype(np.float32) / 255.0)
return np.array(images), np.array(labels)
X_images, y_labels = create_synthetic_images(num_images=300, img_size=32)
print(f"Synthetic dataset: {X_images.shape}, Labels: {y_labels.shape}")
print(f"Class distribution: {np.bincount(y_labels)}")
# 7. Visualization
print("\n=== 7. Visualization ===")
fig, axes = plt.subplots(3, 3, figsize=(12, 10))
# Display synthetic images
for i in range(9):
idx = i % len(X_images)
axes[i // 3, i % 3].imshow(X_images[idx])
axes[i // 3, i % 3].set_title(f"Class {y_labels[idx]}")
axes[i // 3, i % 3].axis('off')
plt.suptitle("Synthetic Image Dataset", fontsize=14, fontweight='bold')
plt.tight_layout()
plt.savefig('synthetic_images.png', dpi=100, bbox_inches='tight')
print("Synthetic images saved as 'synthetic_images.png'")
# 8. Model architectures comparison
print("\n=== 8. Architecture Comparison ===")
architectures_info = {
'CNN': ImageClassifierCNN(),
'ObjectDetector': ObjectDetector(),
'U-Net': UNet(),
}
arch_data = {
'Architecture': list(architectures_info.keys()),
'Parameters': [sum(p.numel() for p in m.parameters()) for m in architectures_info.values()],
'Use Case': ['Classification', 'Object Detection', 'Segmentation']
}
arch_df = pd.DataFrame(arch_data)
print("\nArchitecture Comparison:")
print(arch_df.to_string(index=False))
# Visualization
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
# Parameters comparison
axes[0].barh(arch_df['Architecture'], arch_df['Parameters'], color='steelblue')
axes[0].set_xlabel('Number of Parameters')
axes[0].set_title('Model Complexity Comparison')
axes[0].set_xscale('log')
# Use cases
use_cases = ['Classification', 'Detection', 'Segmentation',
'Classification', 'Detection', 'Segmentation']
colors_map = {'Classification': 'green', 'Detection': 'orange', 'Segmentation': 'red'}
bar_colors = [colors_map[uc] for uc in arch_df['Use Case']]
axes[1].bar(arch_df['Architecture'], [1, 1, 1], color=bar_colors, alpha=0.7)
axes[1].set_ylabel('Primary Task')
axes[1].set_title('Architecture Use Cases')
axes[1].set_ylim([0, 1.5])
plt.tight_layout()
plt.savefig('cv_architecture_comparison.png', dpi=100, bbox_inches='tight')
print("\nArchitecture comparison saved as 'cv_architecture_comparison.png'")
# 9. Bounding box visualization
print("\n=== 9. Bounding Box Visualization ===")
fig, ax = plt.subplots(figsize=(10, 8))
ax.imshow(X_images[0])
# Draw sample bounding boxes
bboxes = [
(5, 5, 15, 15), # x1, y1, x2, y2
(18, 10, 28, 20),
(8, 20, 18, 28)
]
for bbox in bboxes:
rect = patches.Rectangle((bbox[0], bbox[1]), bbox[2]-bbox[0], bbox[3]-bbox[1],
linewidth=2, edgecolor='red', facecolor='none')
ax.add_patch(rect)
ax.set_title('Bounding Box Detection Example')
ax.axis('off')
plt.savefig('bounding_boxes.png', dpi=100, bbox_inches='tight')
print("Bounding box visualization saved as 'bounding_boxes.png'")
print("\nComputer vision setup completed!")
Common CV Architectures
- Classification: ResNet, EfficientNet, Vision Transformer
- Detection: YOLO v5, Faster R-CNN, RetinaNet
- Segmentation: U-Net, DeepLab v3, Mask R-CNN
- Tracking: SORT, DeepSORT, ByteTrack
Image Preprocessing
- Resizing to standard dimensions
- Normalization with ImageNet stats
- Data augmentation (rotation, flip, crop)
- Color space conversion
Evaluation Metrics
- Classification: Accuracy, Precision, Recall, F1
- Detection: mAP (mean Average Precision), IoU
- Segmentation: IoU, Dice coefficient, Hausdorff distance
Deliverables
- Trained vision model
- Inference pipeline
- Performance evaluation
- Visualization results
- Model optimization report
- Deployment guide
Quick Install
/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/computer-visionCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
subagent-driven-development
DevelopmentThis skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.
algorithmic-art
MetaThis Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.
executing-plans
DesignUse the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.
cost-optimization
OtherThis Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.
