container-expert
About
This Claude Skill provides expert guidance for containerization and deployment using Docker, Docker Compose, and Nginx. It helps developers with Dockerfile creation, reverse proxy setup, SSL termination, and production environment configurations. Use it when you need to dockerize applications, configure Nginx, or create deployment setups.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/container-expertCopy and paste this command in Claude Code to install this skill
Documentation
🐳 Container Expert (Docker & Nginx)
Bu yetenek, uygulamaların konteynerleştirilmesi (Docker) ve sunulması (Nginx) konularında uzman rehberlik sağlar.
🎯 Ne Zaman Kullanılır?
- Kullanıcı "uygulamayı dockerize et" dediğinde.
- "Nginx reverse proxy ayarla" isteği geldiğinde.
docker-compose.ymlveyaDockerfileoluşturulması gerektiğinde.- Üretim ortamı (production) dağıtım konfigürasyonlarında.
🏗️ 1. Dockerfile Standartları
Her zaman Multi-Stage Build (Çok Aşamalı İnşa) kullanın. Bu, imaj boyutunu küçültür ve güvenliği artırır.
Node.js / Next.js İçin Örnek (Dockerfile)
# 1. Aşama: Bağımlılıklar
FROM node:18-alpine AS deps
WORKDIR /app
COPY package.json package-lock.json ./
RUN npm ci
# 2. Aşama: İnşa (Build)
FROM node:18-alpine AS builder
WORKDIR /app
COPY --from=deps /app/node_modules ./node_modules
COPY . .
RUN npm run build
# 3. Aşama: Çalıştırma (Runner)
FROM node:18-alpine AS runner
WORKDIR /app
ENV NODE_ENV production
COPY --from=builder /app/public ./public
COPY --from=builder /app/.next ./.next
COPY --from=builder /app/node_modules ./node_modules
COPY --from=builder /app/package.json ./package.json
EXPOSE 3000
CMD ["npm", "start"]
🐙 2. Docker Compose Şablonları
Servisleri ve veritabanlarını birleştirmek için kullanılır.
Standart Yığın (docker-compose.yml)
version: '3.8'
services:
app:
build: .
ports:
- "3000:3000"
environment:
- DATABASE_URL=postgresql://user:pass@db:5432/myapp
depends_on:
- db
db:
image: postgres:15-alpine
volumes:
- db_data:/var/lib/postgresql/data
environment:
- POSTGRES_USER=user
- POSTGRES_PASSWORD=pass
- POSTGRES_DB=myapp
volumes:
db_data:
🌐 3. Nginx Yapılandırması
Uygulamanın önüne bir "Kapı Bekçisi" (Reverse Proxy) koymak için kullanılır.
Örnek nginx.conf
server {
listen 80;
server_name example.com;
# Gzip Sıkıştırma
gzip on;
gzip_types text/plain application/json text/css application/javascript;
location / {
proxy_pass http://app:3000; # Docker servis adı
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection 'upgrade';
proxy_set_header Host $host;
proxy_cache_bypass $http_upgrade;
}
}
🛡️ Güvenlik ve En İyi Pratikler
- Asla Root Kullanma: Dockerfile içinde
USER nodegibi root olmayan bir kullanıcıya geçin. - Alpine Kullan:
node:alpineveyapython:alpinegibi küçük imajları tercih edin. - .dockerignore:
node_modules,.git,.envgibi dosyaların imaja kopyalanmasını engelleyin. - Sırlar (Secrets): Veritabanı şifrelerini asla kodun içine gömmeyin,
.envdosyasından veya Docker Secrets'tan okuyun.
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
