huggingface-tokenizers
About
This Claude Skill provides high-performance tokenization using Rust-based implementations that can process 1GB of text in under 20 seconds. It supports popular algorithms like BPE, WordPiece, and Unigram while enabling custom vocabulary training and alignment tracking. Use it when you need fast production-ready tokenization or want to train custom tokenizers for NLP pipelines.
Quick Install
Claude Code
Recommended/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLsgit clone https://github.com/zechenzhangAGI/AI-research-SKILLs.git ~/.claude/skills/huggingface-tokenizersCopy and paste this command in Claude Code to install this skill
Documentation
HuggingFace Tokenizers - Fast Tokenization for NLP
Fast, production-ready tokenizers with Rust performance and Python ease-of-use.
When to use HuggingFace Tokenizers
Use HuggingFace Tokenizers when:
- Need extremely fast tokenization (<20s per GB of text)
- Training custom tokenizers from scratch
- Want alignment tracking (token → original text position)
- Building production NLP pipelines
- Need to tokenize large corpora efficiently
Performance:
- Speed: <20 seconds to tokenize 1GB on CPU
- Implementation: Rust core with Python/Node.js bindings
- Efficiency: 10-100× faster than pure Python implementations
Use alternatives instead:
- SentencePiece: Language-independent, used by T5/ALBERT
- tiktoken: OpenAI's BPE tokenizer for GPT models
- transformers AutoTokenizer: Loading pretrained only (uses this library internally)
Quick start
Installation
# Install tokenizers
pip install tokenizers
# With transformers integration
pip install tokenizers transformers
Load pretrained tokenizer
from tokenizers import Tokenizer
# Load from HuggingFace Hub
tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
# Encode text
output = tokenizer.encode("Hello, how are you?")
print(output.tokens) # ['hello', ',', 'how', 'are', 'you', '?']
print(output.ids) # [7592, 1010, 2129, 2024, 2017, 1029]
# Decode back
text = tokenizer.decode(output.ids)
print(text) # "hello, how are you?"
Train custom BPE tokenizer
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.pre_tokenizers import Whitespace
# Initialize tokenizer with BPE model
tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
tokenizer.pre_tokenizer = Whitespace()
# Configure trainer
trainer = BpeTrainer(
vocab_size=30000,
special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"],
min_frequency=2
)
# Train on files
files = ["train.txt", "validation.txt"]
tokenizer.train(files, trainer)
# Save
tokenizer.save("my-tokenizer.json")
Training time: ~1-2 minutes for 100MB corpus, ~10-20 minutes for 1GB
Batch encoding with padding
# Enable padding
tokenizer.enable_padding(pad_id=3, pad_token="[PAD]")
# Encode batch
texts = ["Hello world", "This is a longer sentence"]
encodings = tokenizer.encode_batch(texts)
for encoding in encodings:
print(encoding.ids)
# [101, 7592, 2088, 102, 3, 3, 3]
# [101, 2023, 2003, 1037, 2936, 6251, 102]
Tokenization algorithms
BPE (Byte-Pair Encoding)
How it works:
- Start with character-level vocabulary
- Find most frequent character pair
- Merge into new token, add to vocabulary
- Repeat until vocabulary size reached
Used by: GPT-2, GPT-3, RoBERTa, BART, DeBERTa
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.pre_tokenizers import ByteLevel
tokenizer = Tokenizer(BPE(unk_token="<|endoftext|>"))
tokenizer.pre_tokenizer = ByteLevel()
trainer = BpeTrainer(
vocab_size=50257,
special_tokens=["<|endoftext|>"],
min_frequency=2
)
tokenizer.train(files=["data.txt"], trainer=trainer)
Advantages:
- Handles OOV words well (breaks into subwords)
- Flexible vocabulary size
- Good for morphologically rich languages
Trade-offs:
- Tokenization depends on merge order
- May split common words unexpectedly
WordPiece
How it works:
- Start with character vocabulary
- Score merge pairs:
frequency(pair) / (frequency(first) × frequency(second)) - Merge highest scoring pair
- Repeat until vocabulary size reached
Used by: BERT, DistilBERT, MobileBERT
from tokenizers import Tokenizer
from tokenizers.models import WordPiece
from tokenizers.trainers import WordPieceTrainer
from tokenizers.pre_tokenizers import Whitespace
from tokenizers.normalizers import BertNormalizer
tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
tokenizer.normalizer = BertNormalizer(lowercase=True)
tokenizer.pre_tokenizer = Whitespace()
trainer = WordPieceTrainer(
vocab_size=30522,
special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"],
continuing_subword_prefix="##"
)
tokenizer.train(files=["corpus.txt"], trainer=trainer)
Advantages:
- Prioritizes meaningful merges (high score = semantically related)
- Used successfully in BERT (state-of-the-art results)
Trade-offs:
- Unknown words become
[UNK]if no subword match - Saves vocabulary, not merge rules (larger files)
Unigram
How it works:
- Start with large vocabulary (all substrings)
- Compute loss for corpus with current vocabulary
- Remove tokens with minimal impact on loss
- Repeat until vocabulary size reached
Used by: ALBERT, T5, mBART, XLNet (via SentencePiece)
from tokenizers import Tokenizer
from tokenizers.models import Unigram
from tokenizers.trainers import UnigramTrainer
tokenizer = Tokenizer(Unigram())
trainer = UnigramTrainer(
vocab_size=8000,
special_tokens=["<unk>", "<s>", "</s>"],
unk_token="<unk>"
)
tokenizer.train(files=["data.txt"], trainer=trainer)
Advantages:
- Probabilistic (finds most likely tokenization)
- Works well for languages without word boundaries
- Handles diverse linguistic contexts
Trade-offs:
- Computationally expensive to train
- More hyperparameters to tune
Tokenization pipeline
Complete pipeline: Normalization → Pre-tokenization → Model → Post-processing
Normalization
Clean and standardize text:
from tokenizers.normalizers import NFD, StripAccents, Lowercase, Sequence
tokenizer.normalizer = Sequence([
NFD(), # Unicode normalization (decompose)
Lowercase(), # Convert to lowercase
StripAccents() # Remove accents
])
# Input: "Héllo WORLD"
# After normalization: "hello world"
Common normalizers:
NFD,NFC,NFKD,NFKC- Unicode normalization formsLowercase()- Convert to lowercaseStripAccents()- Remove accents (é → e)Strip()- Remove whitespaceReplace(pattern, content)- Regex replacement
Pre-tokenization
Split text into word-like units:
from tokenizers.pre_tokenizers import Whitespace, Punctuation, Sequence, ByteLevel
# Split on whitespace and punctuation
tokenizer.pre_tokenizer = Sequence([
Whitespace(),
Punctuation()
])
# Input: "Hello, world!"
# After pre-tokenization: ["Hello", ",", "world", "!"]
Common pre-tokenizers:
Whitespace()- Split on spaces, tabs, newlinesByteLevel()- GPT-2 style byte-level splittingPunctuation()- Isolate punctuationDigits(individual_digits=True)- Split digits individuallyMetaspace()- Replace spaces with ▁ (SentencePiece style)
Post-processing
Add special tokens for model input:
from tokenizers.processors import TemplateProcessing
# BERT-style: [CLS] sentence [SEP]
tokenizer.post_processor = TemplateProcessing(
single="[CLS] $A [SEP]",
pair="[CLS] $A [SEP] $B [SEP]",
special_tokens=[
("[CLS]", 1),
("[SEP]", 2),
],
)
Common patterns:
# GPT-2: sentence <|endoftext|>
TemplateProcessing(
single="$A <|endoftext|>",
special_tokens=[("<|endoftext|>", 50256)]
)
# RoBERTa: <s> sentence </s>
TemplateProcessing(
single="<s> $A </s>",
pair="<s> $A </s> </s> $B </s>",
special_tokens=[("<s>", 0), ("</s>", 2)]
)
Alignment tracking
Track token positions in original text:
output = tokenizer.encode("Hello, world!")
# Get token offsets
for token, offset in zip(output.tokens, output.offsets):
start, end = offset
print(f"{token:10} → [{start:2}, {end:2}): {text[start:end]!r}")
# Output:
# hello → [ 0, 5): 'Hello'
# , → [ 5, 6): ','
# world → [ 7, 12): 'world'
# ! → [12, 13): '!'
Use cases:
- Named entity recognition (map predictions back to text)
- Question answering (extract answer spans)
- Token classification (align labels to original positions)
Integration with transformers
Load with AutoTokenizer
from transformers import AutoTokenizer
# AutoTokenizer automatically uses fast tokenizers
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# Check if using fast tokenizer
print(tokenizer.is_fast) # True
# Access underlying tokenizers.Tokenizer
fast_tokenizer = tokenizer.backend_tokenizer
print(type(fast_tokenizer)) # <class 'tokenizers.Tokenizer'>
Convert custom tokenizer to transformers
from tokenizers import Tokenizer
from transformers import PreTrainedTokenizerFast
# Train custom tokenizer
tokenizer = Tokenizer(BPE())
# ... train tokenizer ...
tokenizer.save("my-tokenizer.json")
# Wrap for transformers
transformers_tokenizer = PreTrainedTokenizerFast(
tokenizer_file="my-tokenizer.json",
unk_token="[UNK]",
pad_token="[PAD]",
cls_token="[CLS]",
sep_token="[SEP]",
mask_token="[MASK]"
)
# Use like any transformers tokenizer
outputs = transformers_tokenizer(
"Hello world",
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
)
Common patterns
Train from iterator (large datasets)
from datasets import load_dataset
# Load dataset
dataset = load_dataset("wikitext", "wikitext-103-raw-v1", split="train")
# Create batch iterator
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i:i + batch_size]["text"]
# Train tokenizer
tokenizer.train_from_iterator(
batch_iterator(),
trainer=trainer,
length=len(dataset) # For progress bar
)
Performance: Processes 1GB in ~10-20 minutes
Enable truncation and padding
# Enable truncation
tokenizer.enable_truncation(max_length=512)
# Enable padding
tokenizer.enable_padding(
pad_id=tokenizer.token_to_id("[PAD]"),
pad_token="[PAD]",
length=512 # Fixed length, or None for batch max
)
# Encode with both
output = tokenizer.encode("This is a long sentence that will be truncated...")
print(len(output.ids)) # 512
Multi-processing
from tokenizers import Tokenizer
from multiprocessing import Pool
# Load tokenizer
tokenizer = Tokenizer.from_file("tokenizer.json")
def encode_batch(texts):
return tokenizer.encode_batch(texts)
# Process large corpus in parallel
with Pool(8) as pool:
# Split corpus into chunks
chunk_size = 1000
chunks = [corpus[i:i+chunk_size] for i in range(0, len(corpus), chunk_size)]
# Encode in parallel
results = pool.map(encode_batch, chunks)
Speedup: 5-8× with 8 cores
Performance benchmarks
Training speed
| Corpus Size | BPE (30k vocab) | WordPiece (30k) | Unigram (8k) |
|---|---|---|---|
| 10 MB | 15 sec | 18 sec | 25 sec |
| 100 MB | 1.5 min | 2 min | 4 min |
| 1 GB | 15 min | 20 min | 40 min |
Hardware: 16-core CPU, tested on English Wikipedia
Tokenization speed
| Implementation | 1 GB corpus | Throughput |
|---|---|---|
| Pure Python | ~20 minutes | ~50 MB/min |
| HF Tokenizers | ~15 seconds | ~4 GB/min |
| Speedup | 80× | 80× |
Test: English text, average sentence length 20 words
Memory usage
| Task | Memory |
|---|---|
| Load tokenizer | ~10 MB |
| Train BPE (30k vocab) | ~200 MB |
| Encode 1M sentences | ~500 MB |
Supported models
Pre-trained tokenizers available via from_pretrained():
BERT family:
bert-base-uncased,bert-large-caseddistilbert-base-uncasedroberta-base,roberta-large
GPT family:
gpt2,gpt2-medium,gpt2-largedistilgpt2
T5 family:
t5-small,t5-base,t5-largegoogle/flan-t5-xxl
Other:
facebook/bart-base,facebook/mbart-large-cc25albert-base-v2,albert-xlarge-v2xlm-roberta-base,xlm-roberta-large
Browse all: https://huggingface.co/models?library=tokenizers
References
- Training Guide - Train custom tokenizers, configure trainers, handle large datasets
- Algorithms Deep Dive - BPE, WordPiece, Unigram explained in detail
- Pipeline Components - Normalizers, pre-tokenizers, post-processors, decoders
- Transformers Integration - AutoTokenizer, PreTrainedTokenizerFast, special tokens
Resources
- Docs: https://huggingface.co/docs/tokenizers
- GitHub: https://github.com/huggingface/tokenizers ⭐ 9,000+
- Version: 0.20.0+
- Course: https://huggingface.co/learn/nlp-course/chapter6/1
- Paper: BPE (Sennrich et al., 2016), WordPiece (Schuster & Nakajima, 2012)
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
