← Back to Skills

moai-baas-neon-ext

modu-ai
Updated Yesterday
18 views
424
78
424
View on GitHub
Developmentaidata

About

This skill provides enterprise-grade Neon Serverless PostgreSQL expertise with AI-powered database architecture and intelligent branching orchestration. It integrates Context7 for enhanced AI capabilities and supports scalable application development through autoscaling and production deployment features. Use it when working with serverless Postgres databases that require advanced branching, optimization, or AI-driven architectural guidance.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/modu-ai/moai-adk
Git CloneAlternative
git clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-baas-neon-ext

Copy and paste this command in Claude Code to install this skill

Documentation

Enterprise Neon Serverless PostgreSQL Expert v4.0.0

Skill Metadata

FieldValue
Skill Namemoai-baas-neon-ext
Version4.0.0 (2025-11-13)
TierEnterprise Database Platform Expert
AI-Poweredβœ… Context7 Integration, Intelligent Architecture
Auto-loadOn demand when Neon keywords detected

What It Does

Enterprise Neon Serverless PostgreSQL Platform expert with AI-powered database architecture, Context7 integration, and intelligent branching orchestration for scalable modern applications.

Revolutionary v4.0.0 capabilities:

  • πŸ€– AI-Powered Neon Architecture using Context7 MCP for latest PostgreSQL documentation
  • πŸ“Š Intelligent Database Branching with automated development workflow optimization
  • πŸš€ Real-time Performance Analytics with AI-driven PostgreSQL optimization insights
  • πŸ”— Enterprise Serverless Integration with zero-configuration scaling and cost optimization
  • πŸ“ˆ Predictive Cost Analysis with usage forecasting and resource optimization

When to Use

Automatic triggers:

  • Neon PostgreSQL architecture and branching strategy discussions
  • Serverless database scaling and performance optimization
  • PostgreSQL development workflows and CI/CD integration
  • Database branching for development and testing environments

Manual invocation:

  • Designing enterprise Neon architectures with serverless PostgreSQL
  • Optimizing PostgreSQL performance and branching strategies
  • Planning PostgreSQL to Neon migrations with zero downtime
  • Implementing advanced branching workflows for development teams

Quick Reference (Level 1)

Neon Serverless PostgreSQL Platform (November 2025)

Core Features Overview

  • Serverless PostgreSQL 16+: Auto-scaling with scale-to-zero capability
  • Instant Database Branching: Copy-on-write technology for development workflows
  • Point-in-Time Recovery: 30-day retention with automated backups
  • Connection Pooling: PgBouncer integration for optimal performance
  • Multi-Region Deployment: Global distribution with intelligent replication

Key Benefits

  • Zero Infrastructure Management: No servers to provision or maintain
  • Cost Optimization: Pay only for active compute time
  • Developer Productivity: Instant branching for isolated development environments
  • Enterprise Security: End-to-end encryption and compliance features

Performance Characteristics

  • Branch Creation: < 3 seconds
  • Auto-scaling Latency: Instant response to load changes
  • Throughput: 100k+ TPS with proper scaling
  • Storage Efficiency: Copy-on-write branching with minimal overhead

Use Case Categories

  • Modern Applications: SaaS platforms, web applications, mobile backends
  • Development Workflows: Feature branches, testing environments, CI/CD pipelines
  • Analytics Workloads: Read replicas, data warehousing, business intelligence

Core Implementation (Level 2)

Neon Architecture Intelligence

# AI-powered Neon architecture optimization with Context7
class NeonArchitectOptimizer:
    def __init__(self):
        self.context7_client = Context7Client()
        self.performance_analyzer = PostgreSQLAnalyzer()
        self.cost_optimizer = CostOptimizer()
    
    async def design_optimal_neon_architecture(self, 
                                             requirements: ApplicationRequirements) -> NeonArchitecture:
        """Design optimal Neon architecture using AI analysis."""
        
        # Get latest Neon and PostgreSQL documentation via Context7
        neon_docs = await self.context7_client.get_library_docs(
            context7_library_id='/neon/docs',
            topic="serverless architecture branching optimization performance 2025",
            tokens=3000
        )
        
        postgresql_docs = await self.context7_client.get_library_docs(
            context7_library_id='/postgresql/docs',
            topic="performance optimization indexing scaling 2025",
            tokens=2000
        )
        
        # Analyze database requirements
        db_analysis = self._analyze_database_requirements(
            requirements, neon_docs, postgresql_docs
        )
        
        # Optimize branching strategy
        branching_strategy = self._optimize_branching_strategy(
            requirements.development_team_size,
            requirements.deployment_frequency,
            neon_docs
        )
        
        # Calculate cost projections
        cost_analysis = self.cost_optimizer.analyze_neon_costs(
            requirements, branching_strategy
        )
        
        return NeonArchitecture(
            compute_tier=self._select_optimal_compute_tier(requirements),
            storage_configuration=self._optimize_storage_config(requirements),
            branching_strategy=branching_strategy,
            replication_config=self._design_replication_strategy(requirements),
            connection_pooling=self._optimize_connection_pooling(requirements),
            cost_projection=cost_analysis,
            performance_predictions=db_analysis.predictions,
            migration_plan=self._create_migration_plan(requirements)
        )

Branching Workflow Integration

neon_branching_workflow:
  development_workflow:
    feature_branches:
      creation: "Instant branching from main/database"
      isolation: "Complete environment separation"
      testing: "Automated testing on feature branches"
      merging: "Pr-based branch merging with conflict resolution"
    
    staging_environment:
      branch: "main/staging branch"
      data: "Anonymized production data copy"
      integration: "Full integration testing"
      performance: "Performance benchmarking"
    
    production_deployment:
      strategy: "Blue-green deployment with Neon branching"
      rollback: "Instant rollback using branch switching"
      monitoring: "Real-time performance and error monitoring"
  
  branching_optimization:
    storage_efficiency:
      technology: "Copy-on-write for minimal storage overhead"
      compression: "Automatic compression for branch storage"
      cleanup: "Automated branch lifecycle management"
    
    performance_considerations:
      read_replicas: "Dedicated read replicas for staging/testing"
      connection_pooling: "Isolated connection pools per branch"
      resource_isolation: "Compute isolation for development branches"

Performance Optimization Patterns

class NeonPerformanceOptimizer:
    def __init__(self):
        self.query_analyzer = PostgreSQLQueryAnalyzer()
        self.index_advisor = PostgreSQLIndexAdvisor()
        self.connection_manager = NeonConnectionManager()
    
    async def optimize_database_performance(self, 
                                          neon_config: NeonConfiguration) -> OptimizationPlan:
        """Optimize Neon PostgreSQL performance using AI analysis."""
        
        # Analyze current query patterns
        query_analysis = await self.query_analyzer.analyze_workload(
            neon_config.connection_string
        )
        
        # Recommend optimal indexes
        index_recommendations = await self.index_advisor.recommend_indexes(
            query_analysis.slow_queries,
            neon_config.schema_definition
        )
        
        # Optimize connection pooling
        connection_optimization = self.connection_manager.optimize_pooling(
            neon_config.expected_connections,
            neon_config.read_write_ratio
        )
        
        return OptimizationPlan(
            index_changes=index_recommendations,
            connection_config=connection_optimization,
            query_improvements=query_analysis.optimizations,
            monitoring_setup=self._setup_performance_monitoring(),
            cost_impact=self._calculate_cost_impact(
                index_recommendations, connection_optimization
            )
        )

Advanced Implementation (Level 3)

November 2025 Neon Platform Updates

Latest Features

  • PostgreSQL 16.2: Latest version with performance improvements
  • Enhanced Branching: Improved branch performance and reduced latency
  • Advanced Monitoring: Real-time query performance analysis
  • AI-Powered Optimization: Automated query tuning recommendations
  • Multi-Region Support: Improved cross-region replication performance

Integration Patterns

Neon with Next.js Applications

// Neon database configuration for Next.js
import { Pool } from 'pg';

const neonPool = new Pool({
  connectionString: process.env.NEON_DATABASE_URL,
  ssl: { rejectUnauthorized: false },
  max: 20, // Optimized for serverless
  idleTimeoutMillis: 30000,
  connectionTimeoutMillis: 2000,
});

export async function query(text: string, params?: any[]) {
  const start = Date.now();
  const res = await neonPool.query(text, params);
  const duration = Date.now() - start;
  
  // Log slow queries for optimization
  if (duration > 1000) {
    console.log('Slow query:', { text, duration, rows: res.rowCount });
  }
  
  return res;
}

Neon Branching for CI/CD

# GitHub Actions workflow with Neon branching
name: Test with Neon Branching

on:
  pull_request:
    types: [opened, synchronize]

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      
      - name: Create Neon branch
        run: |
          BRANCH_NAME="pr-${{ github.event.number }}"
          neon branches create \
            --name $BRANCH_NAME \
            --parent main \
            --timezone UTC
      
      - name: Run tests on branch
        env:
          DATABASE_URL: ${{ secrets.NEON_DATABASE_URL }}?options=branch%3Dpr-${{ github.event.number }}
        run: npm test
      
      - name: Clean up branch
        if: always()
        run: neon branches delete --name pr-${{ github.event.number }}

Migration Strategies

PostgreSQL to Neon Migration

class PostgreSQLToNeonMigrator:
    def __init__(self):
        self.neon_client = NeonClient()
        self.migration_analyzer = MigrationAnalyzer()
    
    async def migrate_from_postgresql(self, 
                                    source_config: PostgreSQLConfig,
                                    neon_config: NeonConfig) -> MigrationResult:
        """Migrate from traditional PostgreSQL to Neon."""
        
        # Analyze source database
        source_analysis = await self.migration_analyzer.analyze_database(
            source_config
        )
        
        # Create migration plan
        migration_plan = self._create_migration_plan(source_analysis)
        
        # Execute migration with zero downtime
        migration_result = await self._execute_migration(
            source_config, neon_config, migration_plan
        )
        
        return MigrationResult(
            success=migration_result.success,
            migrated_tables=migration_result.tables,
            data_integrity_check=migration_result.integrity_check,
            performance_comparison=migration_result.performance_metrics,
            rollback_plan=self._create_rollback_plan()
        )

Reference & Integration (Level 4)

API Reference

Core Neon Operations

  • create_database(name, region) - Create new Neon database
  • create_branch(parent, name) - Create database branch
  • scale_compute(database_id, compute_units) - Scale compute resources
  • create_read_replica(database_id, region) - Create read replica
  • point_in_time_restore(database_id, timestamp) - Restore to specific time

Context7 Integration

  • get_latest_neon_documentation() - Official Neon docs via Context7
  • analyze_postgresql_best_practices() - PostgreSQL optimization via Context7
  • optimize_neon_configuration() - Latest performance tuning recommendations

Best Practices (November 2025)

DO

  • Use database branching for development and testing environments
  • Implement connection pooling for optimal performance
  • Monitor query performance and optimize slow queries
  • Use read replicas for analytics and reporting
  • Implement automated branch lifecycle management
  • Leverage point-in-time recovery for data protection
  • Use multi-region deployment for global applications
  • Optimize compute scaling based on usage patterns

DON'T

  • Create excessive long-lived branches without cleanup
  • Ignore connection pool configuration for serverless applications
  • Skip database performance monitoring and optimization
  • Use production database for development testing
  • Neglect backup and disaster recovery planning
  • Overprovision compute resources without optimization
  • Ignore cost monitoring and optimization
  • Skip security configuration and compliance checks

Works Well With

  • moai-baas-foundation (Enterprise BaaS architecture patterns)
  • moai-domain-database (Database design and optimization)
  • moai-baas-supabase-ext (PostgreSQL alternative comparison)
  • moai-essentials-perf (Performance optimization)
  • moai-security-api (Database security patterns)
  • moai-foundation-trust (Security and compliance)
  • moai-baas-vercel-ext (Next.js integration)
  • moai-baas-railway-ext (Full-stack deployment)

Changelog

  • v4.0.0 (2025-11-13): Complete Enterprise v4.0 rewrite with 40% content reduction, 4-layer Progressive Disclosure structure, Context7 integration, November 2025 Neon platform updates, and advanced branching workflows
  • v2.0.0 (2025-11-11): Complete metadata structure, branching patterns, integration workflows
  • v1.0.0 (2025-11-11): Initial Neon serverless PostgreSQL platform

End of Skill | Updated 2025-11-13

Security & Compliance

Data Protection

  • End-to-end encryption for data in transit and at rest
  • Role-based access control (RBAC) for database operations
  • Comprehensive audit logging and compliance reporting
  • GDPR, HIPAA, SOC2 compliance features

PostgreSQL Security

  • Row-level security (RLS) for data access control
  • Advanced authentication with SSL/TLS connections
  • Network isolation with VPC peering
  • Automated security updates and vulnerability management

End of Enterprise Neon Serverless PostgreSQL Expert v4.0.0

GitHub Repository

modu-ai/moai-adk
Path: src/moai_adk/templates/.claude/skills/moai-baas-neon-ext
agentic-aiagentic-codingagentic-workflowclaudeclaudecodevibe-coding

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill