Back to Skills

Convex Agents Context

Sstobo
Updated Today
17 views
5
5
View on GitHub
Metaai

About

This skill enables developers to customize what context an LLM receives for each generation, allowing control over message history and RAG context injection. It supports advanced patterns like cross-thread search, memory injection, conversation summarization, and message filtering. Use it to prevent token overflow, add user profiles, or guide LLM behavior with few-shot examples.

Documentation

Purpose

By default, the Agent includes recent messages as context. This skill covers customizing that behavior for advanced patterns like cross-thread search, memory injection, summarization, and filtering.

When to Use This Skill

  • Limiting context window to prevent token overflow
  • Searching across multiple threads for relevant context
  • Injecting memories or user profiles into every prompt
  • Summarizing long conversations before continuing
  • Filtering out sensitive or irrelevant messages
  • Adding few-shot examples to guide LLM

Configure Default Context Options

const myAgent = new Agent(components.agent, {
  name: "My Agent",
  languageModel: openai.chat("gpt-4o-mini"),
  contextOptions: {
    recentMessages: 50,
    excludeToolMessages: true,
    searchOptions: {
      limit: 10,
      textSearch: true,
      vectorSearch: false,
    },
  },
});

Override Context Per Call

export const generateWithCustomContext = action({
  args: { threadId: v.string(), prompt: v.string() },
  handler: async (ctx, { threadId, prompt }) => {
    const result = await myAgent.generateText(
      ctx,
      { threadId },
      { prompt },
      {
        contextOptions: {
          recentMessages: 20,
          searchOptions: {
            limit: 5,
            textSearch: true,
            vectorSearch: true,
          },
        },
      }
    );

    return result.text;
  },
});

Search Across Threads

export const generateWithCrossThreadContext = action({
  args: { threadId: v.string(), userId: v.string(), prompt: v.string() },
  handler: async (ctx, { threadId, userId, prompt }) => {
    const result = await myAgent.generateText(
      ctx,
      { threadId, userId },
      { prompt },
      {
        contextOptions: {
          searchOtherThreads: true,
          searchOptions: {
            limit: 15,
            textSearch: true,
            vectorSearch: true,
          },
        },
      }
    );

    return result.text;
  },
});

Custom Context Handler

Completely customize context:

const myAgent = new Agent(components.agent, {
  name: "My Agent",
  languageModel: openai.chat("gpt-4o-mini"),
  contextHandler: async (ctx, args) => {
    const userMemories = await getUserMemories(ctx, args.userId);
    const examples = getExamples();

    return [
      ...userMemories,
      ...examples,
      ...args.search,
      ...args.recent,
      ...args.inputMessages,
    ];
  },
});

Fetch Context Manually

Get context without calling LLM:

import { fetchContextWithPrompt } from "@convex-dev/agent";

export const getContextForPrompt = action({
  args: { threadId: v.string(), prompt: v.string() },
  handler: async (ctx, { threadId, prompt }) => {
    const { messages } = await fetchContextWithPrompt(ctx, components.agent, {
      threadId,
      prompt,
      contextOptions: {
        recentMessages: 20,
        searchOptions: { limit: 10, textSearch: true },
      },
    });

    return messages;
  },
});

Key Principles

  • Default context is sufficient: Most use cases work with defaults
  • Search improves relevance: Enable for long conversations
  • userId required for cross-thread: Provide when searching multiple threads
  • Context handlers are powerful: Use for memories, examples, special formatting
  • Recent messages take precedence: Used after search in context order

Next Steps

  • See rag for knowledge base context injection
  • See fundamentals for agent setup
  • See rate-limiting for token management

Quick Install

/plugin add https://github.com/Sstobo/convex-skills/tree/main/convex-agents-context

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

Sstobo/convex-skills
Path: convex-agents-context

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill