Back to Skills

fine-tuning-with-trl

davila7
Updated Today
9 views
15,516
1,344
15,516
View on GitHub
OtherPost-TrainingTRLReinforcement LearningFine-TuningSFTDPOPPOGRPORLHFPreference AlignmentHuggingFace

About

This skill enables fine-tuning LLMs with TRL's reinforcement learning methods including SFT, DPO, and PPO for RLHF and preference alignment. Use it when you need to align models with human feedback or optimize for specific rewards using HuggingFace Transformers. It provides a complete toolkit for instruction tuning, preference alignment, and reward model training.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/davila7/claude-code-templates
Git CloneAlternative
git clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/fine-tuning-with-trl

Copy and paste this command in Claude Code to install this skill

Documentation

TRL - Transformer Reinforcement Learning

Quick start

TRL provides post-training methods for aligning language models with human preferences.

Installation:

pip install trl transformers datasets peft accelerate

Supervised Fine-Tuning (instruction tuning):

from trl import SFTTrainer

trainer = SFTTrainer(
    model="Qwen/Qwen2.5-0.5B",
    train_dataset=dataset,  # Prompt-completion pairs
)
trainer.train()

DPO (align with preferences):

from trl import DPOTrainer, DPOConfig

config = DPOConfig(output_dir="model-dpo", beta=0.1)
trainer = DPOTrainer(
    model=model,
    args=config,
    train_dataset=preference_dataset,  # chosen/rejected pairs
    processing_class=tokenizer
)
trainer.train()

Common workflows

Workflow 1: Full RLHF pipeline (SFT → Reward Model → PPO)

Complete pipeline from base model to human-aligned model.

Copy this checklist:

RLHF Training:
- [ ] Step 1: Supervised fine-tuning (SFT)
- [ ] Step 2: Train reward model
- [ ] Step 3: PPO reinforcement learning
- [ ] Step 4: Evaluate aligned model

Step 1: Supervised fine-tuning

Train base model on instruction-following data:

from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset

# Load model
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B")

# Load instruction dataset
dataset = load_dataset("trl-lib/Capybara", split="train")

# Configure training
training_args = SFTConfig(
    output_dir="Qwen2.5-0.5B-SFT",
    per_device_train_batch_size=4,
    num_train_epochs=1,
    learning_rate=2e-5,
    logging_steps=10,
    save_strategy="epoch"
)

# Train
trainer = SFTTrainer(
    model=model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer
)
trainer.train()
trainer.save_model()

Step 2: Train reward model

Train model to predict human preferences:

from transformers import AutoModelForSequenceClassification
from trl import RewardTrainer, RewardConfig

# Load SFT model as base
model = AutoModelForSequenceClassification.from_pretrained(
    "Qwen2.5-0.5B-SFT",
    num_labels=1  # Single reward score
)
tokenizer = AutoTokenizer.from_pretrained("Qwen2.5-0.5B-SFT")

# Load preference data (chosen/rejected pairs)
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")

# Configure training
training_args = RewardConfig(
    output_dir="Qwen2.5-0.5B-Reward",
    per_device_train_batch_size=2,
    num_train_epochs=1,
    learning_rate=1e-5
)

# Train reward model
trainer = RewardTrainer(
    model=model,
    args=training_args,
    processing_class=tokenizer,
    train_dataset=dataset
)
trainer.train()
trainer.save_model()

Step 3: PPO reinforcement learning

Optimize policy using reward model:

python -m trl.scripts.ppo \
    --model_name_or_path Qwen2.5-0.5B-SFT \
    --reward_model_path Qwen2.5-0.5B-Reward \
    --dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
    --output_dir Qwen2.5-0.5B-PPO \
    --learning_rate 3e-6 \
    --per_device_train_batch_size 64 \
    --total_episodes 10000

Step 4: Evaluate

from transformers import pipeline

# Load aligned model
generator = pipeline("text-generation", model="Qwen2.5-0.5B-PPO")

# Test
prompt = "Explain quantum computing to a 10-year-old"
output = generator(prompt, max_length=200)[0]["generated_text"]
print(output)

Workflow 2: Simple preference alignment with DPO

Align model with preferences without reward model.

Copy this checklist:

DPO Training:
- [ ] Step 1: Prepare preference dataset
- [ ] Step 2: Configure DPO
- [ ] Step 3: Train with DPOTrainer
- [ ] Step 4: Evaluate alignment

Step 1: Prepare preference dataset

Dataset format:

{
  "prompt": "What is the capital of France?",
  "chosen": "The capital of France is Paris.",
  "rejected": "I don't know."
}

Load dataset:

from datasets import load_dataset

dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
# Or load your own
# dataset = load_dataset("json", data_files="preferences.json")

Step 2: Configure DPO

from trl import DPOConfig

config = DPOConfig(
    output_dir="Qwen2.5-0.5B-DPO",
    per_device_train_batch_size=4,
    num_train_epochs=1,
    learning_rate=5e-7,
    beta=0.1,  # KL penalty strength
    max_prompt_length=512,
    max_length=1024,
    logging_steps=10
)

Step 3: Train with DPOTrainer

from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import DPOTrainer

model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")

trainer = DPOTrainer(
    model=model,
    args=config,
    train_dataset=dataset,
    processing_class=tokenizer
)

trainer.train()
trainer.save_model()

CLI alternative:

trl dpo \
    --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
    --dataset_name argilla/Capybara-Preferences \
    --output_dir Qwen2.5-0.5B-DPO \
    --per_device_train_batch_size 4 \
    --learning_rate 5e-7 \
    --beta 0.1

Workflow 3: Memory-efficient online RL with GRPO

Train with reinforcement learning using minimal memory.

Copy this checklist:

GRPO Training:
- [ ] Step 1: Define reward function
- [ ] Step 2: Configure GRPO
- [ ] Step 3: Train with GRPOTrainer

Step 1: Define reward function

def reward_function(completions, **kwargs):
    """
    Compute rewards for completions.

    Args:
        completions: List of generated texts

    Returns:
        List of reward scores (floats)
    """
    rewards = []
    for completion in completions:
        # Example: reward based on length and unique words
        score = len(completion.split())  # Favor longer responses
        score += len(set(completion.lower().split()))  # Reward unique words
        rewards.append(score)
    return rewards

Or use a reward model:

from transformers import pipeline

reward_model = pipeline("text-classification", model="reward-model-path")

def reward_from_model(completions, prompts, **kwargs):
    # Combine prompt + completion
    full_texts = [p + c for p, c in zip(prompts, completions)]
    # Get reward scores
    results = reward_model(full_texts)
    return [r["score"] for r in results]

Step 2: Configure GRPO

from trl import GRPOConfig

config = GRPOConfig(
    output_dir="Qwen2-GRPO",
    per_device_train_batch_size=4,
    num_train_epochs=1,
    learning_rate=1e-5,
    num_generations=4,  # Generate 4 completions per prompt
    max_new_tokens=128
)

Step 3: Train with GRPOTrainer

from datasets import load_dataset
from trl import GRPOTrainer

# Load prompt-only dataset
dataset = load_dataset("trl-lib/tldr", split="train")

trainer = GRPOTrainer(
    model="Qwen/Qwen2-0.5B-Instruct",
    reward_funcs=reward_function,  # Your reward function
    args=config,
    train_dataset=dataset
)

trainer.train()

CLI:

trl grpo \
    --model_name_or_path Qwen/Qwen2-0.5B-Instruct \
    --dataset_name trl-lib/tldr \
    --output_dir Qwen2-GRPO \
    --num_generations 4

When to use vs alternatives

Use TRL when:

  • Need to align model with human preferences
  • Have preference data (chosen/rejected pairs)
  • Want to use reinforcement learning (PPO, GRPO)
  • Need reward model training
  • Doing RLHF (full pipeline)

Method selection:

  • SFT: Have prompt-completion pairs, want basic instruction following
  • DPO: Have preferences, want simple alignment (no reward model needed)
  • PPO: Have reward model, need maximum control over RL
  • GRPO: Memory-constrained, want online RL
  • Reward Model: Building RLHF pipeline, need to score generations

Use alternatives instead:

  • HuggingFace Trainer: Basic fine-tuning without RL
  • Axolotl: YAML-based training configuration
  • LitGPT: Educational, minimal fine-tuning
  • Unsloth: Fast LoRA training

Common issues

Issue: OOM during DPO training

Reduce batch size and sequence length:

config = DPOConfig(
    per_device_train_batch_size=1,  # Reduce from 4
    max_length=512,  # Reduce from 1024
    gradient_accumulation_steps=8  # Maintain effective batch
)

Or use gradient checkpointing:

model.gradient_checkpointing_enable()

Issue: Poor alignment quality

Tune beta parameter:

# Higher beta = more conservative (stays closer to reference)
config = DPOConfig(beta=0.5)  # Default 0.1

# Lower beta = more aggressive alignment
config = DPOConfig(beta=0.01)

Issue: Reward model not learning

Check loss type and learning rate:

config = RewardConfig(
    learning_rate=1e-5,  # Try different LR
    num_train_epochs=3  # Train longer
)

Ensure preference dataset has clear winners:

# Verify dataset
print(dataset[0])
# Should have clear chosen > rejected

Issue: PPO training unstable

Adjust KL coefficient:

config = PPOConfig(
    kl_coef=0.1,  # Increase from 0.05
    cliprange=0.1  # Reduce from 0.2
)

Advanced topics

SFT training guide: See references/sft-training.md for dataset formats, chat templates, packing strategies, and multi-GPU training.

DPO variants: See references/dpo-variants.md for IPO, cDPO, RPO, and other DPO loss functions with recommended hyperparameters.

Reward modeling: See references/reward-modeling.md for outcome vs process rewards, Bradley-Terry loss, and reward model evaluation.

Online RL methods: See references/online-rl.md for PPO, GRPO, RLOO, and OnlineDPO with detailed configurations.

Hardware requirements

  • GPU: NVIDIA (CUDA required)
  • VRAM: Depends on model and method
    • SFT 7B: 16GB (with LoRA)
    • DPO 7B: 24GB (stores reference model)
    • PPO 7B: 40GB (policy + reward model)
    • GRPO 7B: 24GB (more memory efficient)
  • Multi-GPU: Supported via accelerate
  • Mixed precision: BF16 recommended (A100/H100)

Memory optimization:

  • Use LoRA/QLoRA for all methods
  • Enable gradient checkpointing
  • Use smaller batch sizes with gradient accumulation

Resources

GitHub Repository

davila7/claude-code-templates
Path: cli-tool/components/skills/ai-research/post-training-trl-fine-tuning
anthropicanthropic-claudeclaudeclaude-code

Related Skills

quantizing-models-bitsandbytes

Other

This skill quantizes LLMs to 8-bit or 4-bit precision using bitsandbytes, reducing memory usage by 50-75% with minimal accuracy loss for GPU-constrained environments. It supports multiple formats (INT8, NF4, FP4) and enables QLoRA training and 8-bit optimizers. Use it with HuggingFace Transformers when you need to fit larger models into limited memory or accelerate inference.

View skill

axolotl

Design

This skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.

View skill

weights-and-biases

Design

This skill enables ML experiment tracking and MLOps using Weights & Biases, automatically logging metrics and visualizing training in real-time. It helps developers optimize hyperparameters with sweeps, compare runs, and manage a versioned model registry. Use it for collaborative ML project management with full artifact lineage tracking.

View skill

unsloth

Design

This skill provides expert guidance for fast fine-tuning with Unsloth, offering 2-5x faster training and 50-80% memory reduction. It helps developers implement and debug LoRA/QLoRA optimizations for models like Llama and Mistral. Use it when working with Unsloth's APIs, features, or best practices for efficient model training.

View skill