quantizing-models-bitsandbytes
About
This skill quantizes LLMs to 8-bit or 4-bit precision using bitsandbytes, reducing memory usage by 50-75% with minimal accuracy loss for GPU-constrained environments. It supports multiple formats (INT8, NF4, FP4) and enables QLoRA training and 8-bit optimizers. Use it with HuggingFace Transformers when you need to fit larger models into limited memory or accelerate inference.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/quantizing-models-bitsandbytesCopy and paste this command in Claude Code to install this skill
Documentation
bitsandbytes - LLM Quantization
Quick start
bitsandbytes reduces LLM memory by 50% (8-bit) or 75% (4-bit) with <1% accuracy loss.
Installation:
pip install bitsandbytes transformers accelerate
8-bit quantization (50% memory reduction):
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
quantization_config=config,
device_map="auto"
)
# Memory: 14GB → 7GB
4-bit quantization (75% memory reduction):
config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
quantization_config=config,
device_map="auto"
)
# Memory: 14GB → 3.5GB
Common workflows
Workflow 1: Load large model in limited GPU memory
Copy this checklist:
Quantization Loading:
- [ ] Step 1: Calculate memory requirements
- [ ] Step 2: Choose quantization level (4-bit or 8-bit)
- [ ] Step 3: Configure quantization
- [ ] Step 4: Load and verify model
Step 1: Calculate memory requirements
Estimate model memory:
FP16 memory (GB) = Parameters × 2 bytes / 1e9
INT8 memory (GB) = Parameters × 1 byte / 1e9
INT4 memory (GB) = Parameters × 0.5 bytes / 1e9
Example (Llama 2 7B):
FP16: 7B × 2 / 1e9 = 14 GB
INT8: 7B × 1 / 1e9 = 7 GB
INT4: 7B × 0.5 / 1e9 = 3.5 GB
Step 2: Choose quantization level
| GPU VRAM | Model Size | Recommended |
|---|---|---|
| 8 GB | 3B | 4-bit |
| 12 GB | 7B | 4-bit |
| 16 GB | 7B | 8-bit or 4-bit |
| 24 GB | 13B | 8-bit or 70B 4-bit |
| 40+ GB | 70B | 8-bit |
Step 3: Configure quantization
For 8-bit (better accuracy):
from transformers import BitsAndBytesConfig
import torch
config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0, # Outlier threshold
llm_int8_has_fp16_weight=False
)
For 4-bit (maximum memory savings):
config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16, # Compute in FP16
bnb_4bit_quant_type="nf4", # NormalFloat4 (recommended)
bnb_4bit_use_double_quant=True # Nested quantization
)
Step 4: Load and verify model
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-13b-hf",
quantization_config=config,
device_map="auto", # Automatic device placement
torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-13b-hf")
# Test inference
inputs = tokenizer("Hello, how are you?", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
# Check memory
import torch
print(f"Memory allocated: {torch.cuda.memory_allocated()/1e9:.2f}GB")
Workflow 2: Fine-tune with QLoRA (4-bit training)
QLoRA enables fine-tuning large models on consumer GPUs.
Copy this checklist:
QLoRA Fine-tuning:
- [ ] Step 1: Install dependencies
- [ ] Step 2: Configure 4-bit base model
- [ ] Step 3: Add LoRA adapters
- [ ] Step 4: Train with standard Trainer
Step 1: Install dependencies
pip install bitsandbytes transformers peft accelerate datasets
Step 2: Configure 4-bit base model
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
quantization_config=bnb_config,
device_map="auto"
)
Step 3: Add LoRA adapters
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
# Prepare model for training
model = prepare_model_for_kbit_training(model)
# Configure LoRA
lora_config = LoraConfig(
r=16, # LoRA rank
lora_alpha=32, # LoRA alpha
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
# Add LoRA adapters
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# Output: trainable params: 4.2M || all params: 6.7B || trainable%: 0.06%
Step 4: Train with standard Trainer
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir="./qlora-output",
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
num_train_epochs=3,
learning_rate=2e-4,
fp16=True,
logging_steps=10,
save_strategy="epoch"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer
)
trainer.train()
# Save LoRA adapters (only ~20MB)
model.save_pretrained("./qlora-adapters")
Workflow 3: 8-bit optimizer for memory-efficient training
Use 8-bit Adam/AdamW to reduce optimizer memory by 75%.
8-bit Optimizer Setup:
- [ ] Step 1: Replace standard optimizer
- [ ] Step 2: Configure training
- [ ] Step 3: Monitor memory savings
Step 1: Replace standard optimizer
import bitsandbytes as bnb
from transformers import Trainer, TrainingArguments
# Instead of torch.optim.AdamW
model = AutoModelForCausalLM.from_pretrained("model-name")
training_args = TrainingArguments(
output_dir="./output",
per_device_train_batch_size=8,
optim="paged_adamw_8bit", # 8-bit optimizer
learning_rate=5e-5
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset
)
trainer.train()
Manual optimizer usage:
import bitsandbytes as bnb
optimizer = bnb.optim.AdamW8bit(
model.parameters(),
lr=1e-4,
betas=(0.9, 0.999),
eps=1e-8
)
# Training loop
for batch in dataloader:
loss = model(**batch).loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
Step 2: Configure training
Compare memory:
Standard AdamW optimizer memory = model_params × 8 bytes (states)
8-bit AdamW memory = model_params × 2 bytes
Savings = 75% optimizer memory
Example (Llama 2 7B):
Standard: 7B × 8 = 56 GB
8-bit: 7B × 2 = 14 GB
Savings: 42 GB
Step 3: Monitor memory savings
import torch
before = torch.cuda.memory_allocated()
# Training step
optimizer.step()
after = torch.cuda.memory_allocated()
print(f"Memory used: {(after-before)/1e9:.2f}GB")
When to use vs alternatives
Use bitsandbytes when:
- GPU memory limited (need to fit larger model)
- Training with QLoRA (fine-tune 70B on single GPU)
- Inference only (50-75% memory reduction)
- Using HuggingFace Transformers
- Acceptable 0-2% accuracy degradation
Use alternatives instead:
- GPTQ/AWQ: Production serving (faster inference than bitsandbytes)
- GGUF: CPU inference (llama.cpp)
- FP8: H100 GPUs (hardware FP8 faster)
- Full precision: Accuracy critical, memory not constrained
Common issues
Issue: CUDA error during loading
Install matching CUDA version:
# Check CUDA version
nvcc --version
# Install matching bitsandbytes
pip install bitsandbytes --no-cache-dir
Issue: Model loading slow
Use CPU offload for large models:
model = AutoModelForCausalLM.from_pretrained(
"model-name",
quantization_config=config,
device_map="auto",
max_memory={0: "20GB", "cpu": "30GB"} # Offload to CPU
)
Issue: Lower accuracy than expected
Try 8-bit instead of 4-bit:
config = BitsAndBytesConfig(load_in_8bit=True)
# 8-bit has <0.5% accuracy loss vs 1-2% for 4-bit
Or use NF4 with double quantization:
config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # Better than fp4
bnb_4bit_use_double_quant=True # Extra accuracy
)
Issue: OOM even with 4-bit
Enable CPU offload:
model = AutoModelForCausalLM.from_pretrained(
"model-name",
quantization_config=config,
device_map="auto",
offload_folder="offload", # Disk offload
offload_state_dict=True
)
Advanced topics
QLoRA training guide: See references/qlora-training.md for complete fine-tuning workflows, hyperparameter tuning, and multi-GPU training.
Quantization formats: See references/quantization-formats.md for INT8, NF4, FP4 comparison, double quantization, and custom quantization configs.
Memory optimization: See references/memory-optimization.md for CPU offloading strategies, gradient checkpointing, and memory profiling.
Hardware requirements
- GPU: NVIDIA with compute capability 7.0+ (Turing, Ampere, Hopper)
- VRAM: Depends on model and quantization
- 4-bit Llama 2 7B: 4GB
- 4-bit Llama 2 13B: 8GB
- 4-bit Llama 2 70B: 24GB
- CUDA: 11.1+ (12.0+ recommended)
- PyTorch: 2.0+
Supported platforms: NVIDIA GPUs (primary), AMD ROCm, Intel GPUs (experimental)
Resources
- GitHub: https://github.com/bitsandbytes-foundation/bitsandbytes
- HuggingFace docs: https://huggingface.co/docs/transformers/quantization/bitsandbytes
- QLoRA paper: "QLoRA: Efficient Finetuning of Quantized LLMs" (2023)
- LLM.int8() paper: "LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale" (2022)
GitHub Repository
Related Skills
weights-and-biases
DesignThis skill enables ML experiment tracking and MLOps using Weights & Biases, automatically logging metrics and visualizing training in real-time. It helps developers optimize hyperparameters with sweeps, compare runs, and manage a versioned model registry. Use it for collaborative ML project management with full artifact lineage tracking.
axolotl
DesignThis skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.
huggingface-accelerate
DevelopmentHuggingFace Accelerate provides a unified API for adding distributed training support to PyTorch scripts with just 4 lines of code. It seamlessly integrates with DeepSpeed, FSDP, Megatron, and DDP while handling automatic device placement and mixed precision. Use this skill when you need to scale PyTorch training across multiple GPUs or nodes with minimal code changes.
hqq-quantization
OtherHQQ enables fast, calibration-free quantization of LLMs down to 2-bit precision without needing a dataset. It's ideal for rapid quantization workflows and for deployment with vLLM or HuggingFace Transformers. Key advantages include significantly faster quantization than methods like GPTQ and support for fine-tuning quantized models.
