Back to Skills

quantizing-models-bitsandbytes

davila7
Updated Today
31 views
15,516
1,344
15,516
View on GitHub
OtherOptimizationBitsandbytesQuantization8-Bit4-BitMemory OptimizationQLoRANF4INT8HuggingFaceEfficient Inference

About

This skill quantizes LLMs to 8-bit or 4-bit precision using bitsandbytes, reducing memory usage by 50-75% with minimal accuracy loss for GPU-constrained environments. It supports multiple formats (INT8, NF4, FP4) and enables QLoRA training and 8-bit optimizers. Use it with HuggingFace Transformers when you need to fit larger models into limited memory or accelerate inference.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/davila7/claude-code-templates
Git CloneAlternative
git clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/quantizing-models-bitsandbytes

Copy and paste this command in Claude Code to install this skill

Documentation

bitsandbytes - LLM Quantization

Quick start

bitsandbytes reduces LLM memory by 50% (8-bit) or 75% (4-bit) with <1% accuracy loss.

Installation:

pip install bitsandbytes transformers accelerate

8-bit quantization (50% memory reduction):

from transformers import AutoModelForCausalLM, BitsAndBytesConfig

config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-7b-hf",
    quantization_config=config,
    device_map="auto"
)

# Memory: 14GB → 7GB

4-bit quantization (75% memory reduction):

config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-7b-hf",
    quantization_config=config,
    device_map="auto"
)

# Memory: 14GB → 3.5GB

Common workflows

Workflow 1: Load large model in limited GPU memory

Copy this checklist:

Quantization Loading:
- [ ] Step 1: Calculate memory requirements
- [ ] Step 2: Choose quantization level (4-bit or 8-bit)
- [ ] Step 3: Configure quantization
- [ ] Step 4: Load and verify model

Step 1: Calculate memory requirements

Estimate model memory:

FP16 memory (GB) = Parameters × 2 bytes / 1e9
INT8 memory (GB) = Parameters × 1 byte / 1e9
INT4 memory (GB) = Parameters × 0.5 bytes / 1e9

Example (Llama 2 7B):
FP16: 7B × 2 / 1e9 = 14 GB
INT8: 7B × 1 / 1e9 = 7 GB
INT4: 7B × 0.5 / 1e9 = 3.5 GB

Step 2: Choose quantization level

GPU VRAMModel SizeRecommended
8 GB3B4-bit
12 GB7B4-bit
16 GB7B8-bit or 4-bit
24 GB13B8-bit or 70B 4-bit
40+ GB70B8-bit

Step 3: Configure quantization

For 8-bit (better accuracy):

from transformers import BitsAndBytesConfig
import torch

config = BitsAndBytesConfig(
    load_in_8bit=True,
    llm_int8_threshold=6.0,  # Outlier threshold
    llm_int8_has_fp16_weight=False
)

For 4-bit (maximum memory savings):

config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,  # Compute in FP16
    bnb_4bit_quant_type="nf4",  # NormalFloat4 (recommended)
    bnb_4bit_use_double_quant=True  # Nested quantization
)

Step 4: Load and verify model

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-13b-hf",
    quantization_config=config,
    device_map="auto",  # Automatic device placement
    torch_dtype=torch.float16
)

tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-13b-hf")

# Test inference
inputs = tokenizer("Hello, how are you?", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))

# Check memory
import torch
print(f"Memory allocated: {torch.cuda.memory_allocated()/1e9:.2f}GB")

Workflow 2: Fine-tune with QLoRA (4-bit training)

QLoRA enables fine-tuning large models on consumer GPUs.

Copy this checklist:

QLoRA Fine-tuning:
- [ ] Step 1: Install dependencies
- [ ] Step 2: Configure 4-bit base model
- [ ] Step 3: Add LoRA adapters
- [ ] Step 4: Train with standard Trainer

Step 1: Install dependencies

pip install bitsandbytes transformers peft accelerate datasets

Step 2: Configure 4-bit base model

from transformers import AutoModelForCausalLM, BitsAndBytesConfig
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True
)

model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-7b-hf",
    quantization_config=bnb_config,
    device_map="auto"
)

Step 3: Add LoRA adapters

from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training

# Prepare model for training
model = prepare_model_for_kbit_training(model)

# Configure LoRA
lora_config = LoraConfig(
    r=16,  # LoRA rank
    lora_alpha=32,  # LoRA alpha
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)

# Add LoRA adapters
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# Output: trainable params: 4.2M || all params: 6.7B || trainable%: 0.06%

Step 4: Train with standard Trainer

from transformers import Trainer, TrainingArguments

training_args = TrainingArguments(
    output_dir="./qlora-output",
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    num_train_epochs=3,
    learning_rate=2e-4,
    fp16=True,
    logging_steps=10,
    save_strategy="epoch"
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    tokenizer=tokenizer
)

trainer.train()

# Save LoRA adapters (only ~20MB)
model.save_pretrained("./qlora-adapters")

Workflow 3: 8-bit optimizer for memory-efficient training

Use 8-bit Adam/AdamW to reduce optimizer memory by 75%.

8-bit Optimizer Setup:
- [ ] Step 1: Replace standard optimizer
- [ ] Step 2: Configure training
- [ ] Step 3: Monitor memory savings

Step 1: Replace standard optimizer

import bitsandbytes as bnb
from transformers import Trainer, TrainingArguments

# Instead of torch.optim.AdamW
model = AutoModelForCausalLM.from_pretrained("model-name")

training_args = TrainingArguments(
    output_dir="./output",
    per_device_train_batch_size=8,
    optim="paged_adamw_8bit",  # 8-bit optimizer
    learning_rate=5e-5
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset
)

trainer.train()

Manual optimizer usage:

import bitsandbytes as bnb

optimizer = bnb.optim.AdamW8bit(
    model.parameters(),
    lr=1e-4,
    betas=(0.9, 0.999),
    eps=1e-8
)

# Training loop
for batch in dataloader:
    loss = model(**batch).loss
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

Step 2: Configure training

Compare memory:

Standard AdamW optimizer memory = model_params × 8 bytes (states)
8-bit AdamW memory = model_params × 2 bytes
Savings = 75% optimizer memory

Example (Llama 2 7B):
Standard: 7B × 8 = 56 GB
8-bit: 7B × 2 = 14 GB
Savings: 42 GB

Step 3: Monitor memory savings

import torch

before = torch.cuda.memory_allocated()

# Training step
optimizer.step()

after = torch.cuda.memory_allocated()
print(f"Memory used: {(after-before)/1e9:.2f}GB")

When to use vs alternatives

Use bitsandbytes when:

  • GPU memory limited (need to fit larger model)
  • Training with QLoRA (fine-tune 70B on single GPU)
  • Inference only (50-75% memory reduction)
  • Using HuggingFace Transformers
  • Acceptable 0-2% accuracy degradation

Use alternatives instead:

  • GPTQ/AWQ: Production serving (faster inference than bitsandbytes)
  • GGUF: CPU inference (llama.cpp)
  • FP8: H100 GPUs (hardware FP8 faster)
  • Full precision: Accuracy critical, memory not constrained

Common issues

Issue: CUDA error during loading

Install matching CUDA version:

# Check CUDA version
nvcc --version

# Install matching bitsandbytes
pip install bitsandbytes --no-cache-dir

Issue: Model loading slow

Use CPU offload for large models:

model = AutoModelForCausalLM.from_pretrained(
    "model-name",
    quantization_config=config,
    device_map="auto",
    max_memory={0: "20GB", "cpu": "30GB"}  # Offload to CPU
)

Issue: Lower accuracy than expected

Try 8-bit instead of 4-bit:

config = BitsAndBytesConfig(load_in_8bit=True)
# 8-bit has <0.5% accuracy loss vs 1-2% for 4-bit

Or use NF4 with double quantization:

config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",  # Better than fp4
    bnb_4bit_use_double_quant=True  # Extra accuracy
)

Issue: OOM even with 4-bit

Enable CPU offload:

model = AutoModelForCausalLM.from_pretrained(
    "model-name",
    quantization_config=config,
    device_map="auto",
    offload_folder="offload",  # Disk offload
    offload_state_dict=True
)

Advanced topics

QLoRA training guide: See references/qlora-training.md for complete fine-tuning workflows, hyperparameter tuning, and multi-GPU training.

Quantization formats: See references/quantization-formats.md for INT8, NF4, FP4 comparison, double quantization, and custom quantization configs.

Memory optimization: See references/memory-optimization.md for CPU offloading strategies, gradient checkpointing, and memory profiling.

Hardware requirements

  • GPU: NVIDIA with compute capability 7.0+ (Turing, Ampere, Hopper)
  • VRAM: Depends on model and quantization
    • 4-bit Llama 2 7B: 4GB
    • 4-bit Llama 2 13B: 8GB
    • 4-bit Llama 2 70B: 24GB
  • CUDA: 11.1+ (12.0+ recommended)
  • PyTorch: 2.0+

Supported platforms: NVIDIA GPUs (primary), AMD ROCm, Intel GPUs (experimental)

Resources

GitHub Repository

davila7/claude-code-templates
Path: cli-tool/components/skills/ai-research/optimization-bitsandbytes
anthropicanthropic-claudeclaudeclaude-code

Related Skills

weights-and-biases

Design

This skill enables ML experiment tracking and MLOps using Weights & Biases, automatically logging metrics and visualizing training in real-time. It helps developers optimize hyperparameters with sweeps, compare runs, and manage a versioned model registry. Use it for collaborative ML project management with full artifact lineage tracking.

View skill

axolotl

Design

This skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.

View skill

huggingface-accelerate

Development

HuggingFace Accelerate provides a unified API for adding distributed training support to PyTorch scripts with just 4 lines of code. It seamlessly integrates with DeepSpeed, FSDP, Megatron, and DDP while handling automatic device placement and mixed precision. Use this skill when you need to scale PyTorch training across multiple GPUs or nodes with minimal code changes.

View skill

hqq-quantization

Other

HQQ enables fast, calibration-free quantization of LLMs down to 2-bit precision without needing a dataset. It's ideal for rapid quantization workflows and for deployment with vLLM or HuggingFace Transformers. Key advantages include significantly faster quantization than methods like GPTQ and support for fine-tuning quantized models.

View skill