stable-diffusion-image-generation
About
This skill provides text-to-image generation using Stable Diffusion models via HuggingFace Diffusers. It supports image generation from prompts, image-to-image translation, and inpainting/outpainting tasks. Developers should use it when building applications that require high-quality image synthesis or manipulation.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/stable-diffusion-image-generationCopy and paste this command in Claude Code to install this skill
Documentation
Stable Diffusion Image Generation
Comprehensive guide to generating images with Stable Diffusion using the HuggingFace Diffusers library.
When to use Stable Diffusion
Use Stable Diffusion when:
- Generating images from text descriptions
- Performing image-to-image translation (style transfer, enhancement)
- Inpainting (filling in masked regions)
- Outpainting (extending images beyond boundaries)
- Creating variations of existing images
- Building custom image generation workflows
Key features:
- Text-to-Image: Generate images from natural language prompts
- Image-to-Image: Transform existing images with text guidance
- Inpainting: Fill masked regions with context-aware content
- ControlNet: Add spatial conditioning (edges, poses, depth)
- LoRA Support: Efficient fine-tuning and style adaptation
- Multiple Models: SD 1.5, SDXL, SD 3.0, Flux support
Use alternatives instead:
- DALL-E 3: For API-based generation without GPU
- Midjourney: For artistic, stylized outputs
- Imagen: For Google Cloud integration
- Leonardo.ai: For web-based creative workflows
Quick start
Installation
pip install diffusers transformers accelerate torch
pip install xformers # Optional: memory-efficient attention
Basic text-to-image
from diffusers import DiffusionPipeline
import torch
# Load pipeline (auto-detects model type)
pipe = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16
)
pipe.to("cuda")
# Generate image
image = pipe(
"A serene mountain landscape at sunset, highly detailed",
num_inference_steps=50,
guidance_scale=7.5
).images[0]
image.save("output.png")
Using SDXL (higher quality)
from diffusers import AutoPipelineForText2Image
import torch
pipe = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16"
)
pipe.to("cuda")
# Enable memory optimization
pipe.enable_model_cpu_offload()
image = pipe(
prompt="A futuristic city with flying cars, cinematic lighting",
height=1024,
width=1024,
num_inference_steps=30
).images[0]
Architecture overview
Three-pillar design
Diffusers is built around three core components:
Pipeline (orchestration)
├── Model (neural networks)
│ ├── UNet / Transformer (noise prediction)
│ ├── VAE (latent encoding/decoding)
│ └── Text Encoder (CLIP/T5)
└── Scheduler (denoising algorithm)
Pipeline inference flow
Text Prompt → Text Encoder → Text Embeddings
↓
Random Noise → [Denoising Loop] ← Scheduler
↓
Predicted Noise
↓
VAE Decoder → Final Image
Core concepts
Pipelines
Pipelines orchestrate complete workflows:
| Pipeline | Purpose |
|---|---|
StableDiffusionPipeline | Text-to-image (SD 1.x/2.x) |
StableDiffusionXLPipeline | Text-to-image (SDXL) |
StableDiffusion3Pipeline | Text-to-image (SD 3.0) |
FluxPipeline | Text-to-image (Flux models) |
StableDiffusionImg2ImgPipeline | Image-to-image |
StableDiffusionInpaintPipeline | Inpainting |
Schedulers
Schedulers control the denoising process:
| Scheduler | Steps | Quality | Use Case |
|---|---|---|---|
EulerDiscreteScheduler | 20-50 | Good | Default choice |
EulerAncestralDiscreteScheduler | 20-50 | Good | More variation |
DPMSolverMultistepScheduler | 15-25 | Excellent | Fast, high quality |
DDIMScheduler | 50-100 | Good | Deterministic |
LCMScheduler | 4-8 | Good | Very fast |
UniPCMultistepScheduler | 15-25 | Excellent | Fast convergence |
Swapping schedulers
from diffusers import DPMSolverMultistepScheduler
# Swap for faster generation
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config
)
# Now generate with fewer steps
image = pipe(prompt, num_inference_steps=20).images[0]
Generation parameters
Key parameters
| Parameter | Default | Description |
|---|---|---|
prompt | Required | Text description of desired image |
negative_prompt | None | What to avoid in the image |
num_inference_steps | 50 | Denoising steps (more = better quality) |
guidance_scale | 7.5 | Prompt adherence (7-12 typical) |
height, width | 512/1024 | Output dimensions (multiples of 8) |
generator | None | Torch generator for reproducibility |
num_images_per_prompt | 1 | Batch size |
Reproducible generation
import torch
generator = torch.Generator(device="cuda").manual_seed(42)
image = pipe(
prompt="A cat wearing a top hat",
generator=generator,
num_inference_steps=50
).images[0]
Negative prompts
image = pipe(
prompt="Professional photo of a dog in a garden",
negative_prompt="blurry, low quality, distorted, ugly, bad anatomy",
guidance_scale=7.5
).images[0]
Image-to-image
Transform existing images with text guidance:
from diffusers import AutoPipelineForImage2Image
from PIL import Image
pipe = AutoPipelineForImage2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16
).to("cuda")
init_image = Image.open("input.jpg").resize((512, 512))
image = pipe(
prompt="A watercolor painting of the scene",
image=init_image,
strength=0.75, # How much to transform (0-1)
num_inference_steps=50
).images[0]
Inpainting
Fill masked regions:
from diffusers import AutoPipelineForInpainting
from PIL import Image
pipe = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16
).to("cuda")
image = Image.open("photo.jpg")
mask = Image.open("mask.png") # White = inpaint region
result = pipe(
prompt="A red car parked on the street",
image=image,
mask_image=mask,
num_inference_steps=50
).images[0]
ControlNet
Add spatial conditioning for precise control:
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
# Load ControlNet for edge conditioning
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_canny",
torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16
).to("cuda")
# Use Canny edge image as control
control_image = get_canny_image(input_image)
image = pipe(
prompt="A beautiful house in the style of Van Gogh",
image=control_image,
num_inference_steps=30
).images[0]
Available ControlNets
| ControlNet | Input Type | Use Case |
|---|---|---|
canny | Edge maps | Preserve structure |
openpose | Pose skeletons | Human poses |
depth | Depth maps | 3D-aware generation |
normal | Normal maps | Surface details |
mlsd | Line segments | Architectural lines |
scribble | Rough sketches | Sketch-to-image |
LoRA adapters
Load fine-tuned style adapters:
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16
).to("cuda")
# Load LoRA weights
pipe.load_lora_weights("path/to/lora", weight_name="style.safetensors")
# Generate with LoRA style
image = pipe("A portrait in the trained style").images[0]
# Adjust LoRA strength
pipe.fuse_lora(lora_scale=0.8)
# Unload LoRA
pipe.unload_lora_weights()
Multiple LoRAs
# Load multiple LoRAs
pipe.load_lora_weights("lora1", adapter_name="style")
pipe.load_lora_weights("lora2", adapter_name="character")
# Set weights for each
pipe.set_adapters(["style", "character"], adapter_weights=[0.7, 0.5])
image = pipe("A portrait").images[0]
Memory optimization
Enable CPU offloading
# Model CPU offload - moves models to CPU when not in use
pipe.enable_model_cpu_offload()
# Sequential CPU offload - more aggressive, slower
pipe.enable_sequential_cpu_offload()
Attention slicing
# Reduce memory by computing attention in chunks
pipe.enable_attention_slicing()
# Or specific chunk size
pipe.enable_attention_slicing("max")
xFormers memory-efficient attention
# Requires xformers package
pipe.enable_xformers_memory_efficient_attention()
VAE slicing for large images
# Decode latents in tiles for large images
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
Model variants
Loading different precisions
# FP16 (recommended for GPU)
pipe = DiffusionPipeline.from_pretrained(
"model-id",
torch_dtype=torch.float16,
variant="fp16"
)
# BF16 (better precision, requires Ampere+ GPU)
pipe = DiffusionPipeline.from_pretrained(
"model-id",
torch_dtype=torch.bfloat16
)
Loading specific components
from diffusers import UNet2DConditionModel, AutoencoderKL
# Load custom VAE
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
# Use with pipeline
pipe = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
vae=vae,
torch_dtype=torch.float16
)
Batch generation
Generate multiple images efficiently:
# Multiple prompts
prompts = [
"A cat playing piano",
"A dog reading a book",
"A bird painting a picture"
]
images = pipe(prompts, num_inference_steps=30).images
# Multiple images per prompt
images = pipe(
"A beautiful sunset",
num_images_per_prompt=4,
num_inference_steps=30
).images
Common workflows
Workflow 1: High-quality generation
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler
import torch
# 1. Load SDXL with optimizations
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16"
)
pipe.to("cuda")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
# 2. Generate with quality settings
image = pipe(
prompt="A majestic lion in the savanna, golden hour lighting, 8k, detailed fur",
negative_prompt="blurry, low quality, cartoon, anime, sketch",
num_inference_steps=30,
guidance_scale=7.5,
height=1024,
width=1024
).images[0]
Workflow 2: Fast prototyping
from diffusers import AutoPipelineForText2Image, LCMScheduler
import torch
# Use LCM for 4-8 step generation
pipe = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
# Load LCM LoRA for fast generation
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.fuse_lora()
# Generate in ~1 second
image = pipe(
"A beautiful landscape",
num_inference_steps=4,
guidance_scale=1.0
).images[0]
Common issues
CUDA out of memory:
# Enable memory optimizations
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()
# Or use lower precision
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
Black/noise images:
# Check VAE configuration
# Use safety checker bypass if needed
pipe.safety_checker = None
# Ensure proper dtype consistency
pipe = pipe.to(dtype=torch.float16)
Slow generation:
# Use faster scheduler
from diffusers import DPMSolverMultistepScheduler
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
# Reduce steps
image = pipe(prompt, num_inference_steps=20).images[0]
References
- Advanced Usage - Custom pipelines, fine-tuning, deployment
- Troubleshooting - Common issues and solutions
Resources
- Documentation: https://huggingface.co/docs/diffusers
- Repository: https://github.com/huggingface/diffusers
- Model Hub: https://huggingface.co/models?library=diffusers
- Discord: https://discord.gg/diffusers
GitHub Repository
Related Skills
axolotl
DesignThis skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.
nemo-curator
Developmentnemo-curator is a GPU-accelerated toolkit for curating high-quality, multi-modal datasets for LLM training. It provides fast operations like fuzzy deduplication, quality filtering, and PII redaction, scaling across GPUs with RAPIDS. Use it to efficiently clean web-scraped data or deduplicate large corpora.
llama-factory
DesignThis skill provides expert guidance for fine-tuning LLMs using the LLaMA-Factory framework, including its no-code WebUI and support for 100+ models with QLoRA quantization. Use it when implementing, debugging, or learning best practices for LLaMA-Factory solutions in your development workflow.
clip
OtherCLIP is a vision-language model for zero-shot image classification and cross-modal retrieval without fine-tuning. It enables tasks like image-text matching, semantic search, and content moderation by understanding images from natural language prompts. Developers can use it for general-purpose vision tasks where labeled training data is unavailable.
