nemo-curator
About
nemo-curator is a GPU-accelerated toolkit for curating high-quality, multi-modal datasets for LLM training. It provides fast operations like fuzzy deduplication, quality filtering, and PII redaction, scaling across GPUs with RAPIDS. Use it to efficiently clean web-scraped data or deduplicate large corpora.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/nemo-curatorCopy and paste this command in Claude Code to install this skill
Documentation
NeMo Curator - GPU-Accelerated Data Curation
NVIDIA's toolkit for preparing high-quality training data for LLMs.
When to use NeMo Curator
Use NeMo Curator when:
- Preparing LLM training data from web scrapes (Common Crawl)
- Need fast deduplication (16× faster than CPU)
- Curating multi-modal datasets (text, images, video, audio)
- Filtering low-quality or toxic content
- Scaling data processing across GPU cluster
Performance:
- 16× faster fuzzy deduplication (8TB RedPajama v2)
- 40% lower TCO vs CPU alternatives
- Near-linear scaling across GPU nodes
Use alternatives instead:
- datatrove: CPU-based, open-source data processing
- dolma: Allen AI's data toolkit
- Ray Data: General ML data processing (no curation focus)
Quick start
Installation
# Text curation (CUDA 12)
uv pip install "nemo-curator[text_cuda12]"
# All modalities
uv pip install "nemo-curator[all_cuda12]"
# CPU-only (slower)
uv pip install "nemo-curator[cpu]"
Basic text curation pipeline
from nemo_curator import ScoreFilter, Modify
from nemo_curator.datasets import DocumentDataset
import pandas as pd
# Load data
df = pd.DataFrame({"text": ["Good document", "Bad doc", "Excellent text"]})
dataset = DocumentDataset(df)
# Quality filtering
def quality_score(doc):
return len(doc["text"].split()) > 5 # Filter short docs
filtered = ScoreFilter(quality_score)(dataset)
# Deduplication
from nemo_curator.modules import ExactDuplicates
deduped = ExactDuplicates()(filtered)
# Save
deduped.to_parquet("curated_data/")
Data curation pipeline
Stage 1: Quality filtering
from nemo_curator.filters import (
WordCountFilter,
RepeatedLinesFilter,
UrlRatioFilter,
NonAlphaNumericFilter
)
# Apply 30+ heuristic filters
from nemo_curator import ScoreFilter
# Word count filter
dataset = dataset.filter(WordCountFilter(min_words=50, max_words=100000))
# Remove repetitive content
dataset = dataset.filter(RepeatedLinesFilter(max_repeated_line_fraction=0.3))
# URL ratio filter
dataset = dataset.filter(UrlRatioFilter(max_url_ratio=0.2))
Stage 2: Deduplication
Exact deduplication:
from nemo_curator.modules import ExactDuplicates
# Remove exact duplicates
deduped = ExactDuplicates(id_field="id", text_field="text")(dataset)
Fuzzy deduplication (16× faster on GPU):
from nemo_curator.modules import FuzzyDuplicates
# MinHash + LSH deduplication
fuzzy_dedup = FuzzyDuplicates(
id_field="id",
text_field="text",
num_hashes=260, # MinHash parameters
num_buckets=20,
hash_method="md5"
)
deduped = fuzzy_dedup(dataset)
Semantic deduplication:
from nemo_curator.modules import SemanticDuplicates
# Embedding-based deduplication
semantic_dedup = SemanticDuplicates(
id_field="id",
text_field="text",
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
threshold=0.8 # Cosine similarity threshold
)
deduped = semantic_dedup(dataset)
Stage 3: PII redaction
from nemo_curator.modules import Modify
from nemo_curator.modifiers import PIIRedactor
# Redact personally identifiable information
pii_redactor = PIIRedactor(
supported_entities=["EMAIL_ADDRESS", "PHONE_NUMBER", "PERSON", "LOCATION"],
anonymize_action="replace" # or "redact"
)
redacted = Modify(pii_redactor)(dataset)
Stage 4: Classifier filtering
from nemo_curator.classifiers import QualityClassifier
# Quality classification
quality_clf = QualityClassifier(
model_path="nvidia/quality-classifier-deberta",
batch_size=256,
device="cuda"
)
# Filter low-quality documents
high_quality = dataset.filter(lambda doc: quality_clf(doc["text"]) > 0.5)
GPU acceleration
GPU vs CPU performance
| Operation | CPU (16 cores) | GPU (A100) | Speedup |
|---|---|---|---|
| Fuzzy dedup (8TB) | 120 hours | 7.5 hours | 16× |
| Exact dedup (1TB) | 8 hours | 0.5 hours | 16× |
| Quality filtering | 2 hours | 0.2 hours | 10× |
Multi-GPU scaling
from nemo_curator import get_client
import dask_cuda
# Initialize GPU cluster
client = get_client(cluster_type="gpu", n_workers=8)
# Process with 8 GPUs
deduped = FuzzyDuplicates(...)(dataset)
Multi-modal curation
Image curation
from nemo_curator.image import (
AestheticFilter,
NSFWFilter,
CLIPEmbedder
)
# Aesthetic scoring
aesthetic_filter = AestheticFilter(threshold=5.0)
filtered_images = aesthetic_filter(image_dataset)
# NSFW detection
nsfw_filter = NSFWFilter(threshold=0.9)
safe_images = nsfw_filter(filtered_images)
# Generate CLIP embeddings
clip_embedder = CLIPEmbedder(model="openai/clip-vit-base-patch32")
image_embeddings = clip_embedder(safe_images)
Video curation
from nemo_curator.video import (
SceneDetector,
ClipExtractor,
InternVideo2Embedder
)
# Detect scenes
scene_detector = SceneDetector(threshold=27.0)
scenes = scene_detector(video_dataset)
# Extract clips
clip_extractor = ClipExtractor(min_duration=2.0, max_duration=10.0)
clips = clip_extractor(scenes)
# Generate embeddings
video_embedder = InternVideo2Embedder()
video_embeddings = video_embedder(clips)
Audio curation
from nemo_curator.audio import (
ASRInference,
WERFilter,
DurationFilter
)
# ASR transcription
asr = ASRInference(model="nvidia/stt_en_fastconformer_hybrid_large_pc")
transcribed = asr(audio_dataset)
# Filter by WER (word error rate)
wer_filter = WERFilter(max_wer=0.3)
high_quality_audio = wer_filter(transcribed)
# Duration filtering
duration_filter = DurationFilter(min_duration=1.0, max_duration=30.0)
filtered_audio = duration_filter(high_quality_audio)
Common patterns
Web scrape curation (Common Crawl)
from nemo_curator import ScoreFilter, Modify
from nemo_curator.filters import *
from nemo_curator.modules import *
from nemo_curator.datasets import DocumentDataset
# Load Common Crawl data
dataset = DocumentDataset.read_parquet("common_crawl/*.parquet")
# Pipeline
pipeline = [
# 1. Quality filtering
WordCountFilter(min_words=100, max_words=50000),
RepeatedLinesFilter(max_repeated_line_fraction=0.2),
SymbolToWordRatioFilter(max_symbol_to_word_ratio=0.3),
UrlRatioFilter(max_url_ratio=0.3),
# 2. Language filtering
LanguageIdentificationFilter(target_languages=["en"]),
# 3. Deduplication
ExactDuplicates(id_field="id", text_field="text"),
FuzzyDuplicates(id_field="id", text_field="text", num_hashes=260),
# 4. PII redaction
PIIRedactor(),
# 5. NSFW filtering
NSFWClassifier(threshold=0.8)
]
# Execute
for stage in pipeline:
dataset = stage(dataset)
# Save
dataset.to_parquet("curated_common_crawl/")
Distributed processing
from nemo_curator import get_client
from dask_cuda import LocalCUDACluster
# Multi-GPU cluster
cluster = LocalCUDACluster(n_workers=8)
client = get_client(cluster=cluster)
# Process large dataset
dataset = DocumentDataset.read_parquet("s3://large_dataset/*.parquet")
deduped = FuzzyDuplicates(...)(dataset)
# Cleanup
client.close()
cluster.close()
Performance benchmarks
Fuzzy deduplication (8TB RedPajama v2)
- CPU (256 cores): 120 hours
- GPU (8× A100): 7.5 hours
- Speedup: 16×
Exact deduplication (1TB)
- CPU (64 cores): 8 hours
- GPU (4× A100): 0.5 hours
- Speedup: 16×
Quality filtering (100GB)
- CPU (32 cores): 2 hours
- GPU (2× A100): 0.2 hours
- Speedup: 10×
Cost comparison
CPU-based curation (AWS c5.18xlarge × 10):
- Cost: $3.60/hour × 10 = $36/hour
- Time for 8TB: 120 hours
- Total: $4,320
GPU-based curation (AWS p4d.24xlarge × 2):
- Cost: $32.77/hour × 2 = $65.54/hour
- Time for 8TB: 7.5 hours
- Total: $491.55
Savings: 89% reduction ($3,828 saved)
Supported data formats
- Input: Parquet, JSONL, CSV
- Output: Parquet (recommended), JSONL
- WebDataset: TAR archives for multi-modal
Use cases
Production deployments:
- NVIDIA used NeMo Curator to prepare Nemotron-4 training data
- Open-source datasets curated: RedPajama v2, The Pile
References
- Filtering Guide - 30+ quality filters, heuristics
- Deduplication Guide - Exact, fuzzy, semantic methods
Resources
- GitHub: https://github.com/NVIDIA/NeMo-Curator ⭐ 500+
- Docs: https://docs.nvidia.com/nemo-framework/user-guide/latest/datacuration/
- Version: 0.4.0+
- License: Apache 2.0
GitHub Repository
Related Skills
axolotl
DesignThis skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.
training-llms-megatron
DesignThis skill trains massive language models (2B-462B parameters) using NVIDIA's Megatron-Core framework for maximum GPU efficiency. Use it when training models over 1B parameters, requiring advanced parallelism strategies like tensor or pipeline, or needing production-ready performance. It's a proven framework used for models like Nemotron and LLaMA.
tensorrt-llm
OtherTensorRT-LLM is an NVIDIA-optimized library for deploying LLMs on NVIDIA GPUs, delivering up to 100x faster inference than PyTorch. Use it for production serving where you need maximum throughput, low latency, and support for features like quantization (FP8/INT4), in-flight batching, and multi-GPU scaling.
llama-factory
DesignThis skill provides expert guidance for fine-tuning LLMs using the LLaMA-Factory framework, including its no-code WebUI and support for 100+ models with QLoRA quantization. Use it when implementing, debugging, or learning best practices for LLaMA-Factory solutions in your development workflow.
