Back to Skills

pytorch-lightning

davila7
Updated Today
18 views
15,516
1,344
15,516
View on GitHub
DesignPyTorch LightningTraining FrameworkDistributed TrainingDDPFSDPDeepSpeedHigh-Level APICallbacksBest PracticesScalable

About

PyTorch Lightning is a high-level framework that organizes PyTorch code to minimize boilerplate and provides a powerful Trainer class with automatic distributed training (DDP/FSDP/DeepSpeed). It features a callbacks system and built-in best practices, enabling code to scale from a laptop to a supercomputer without changes. Use it when you want clean, production-ready training loops with minimal setup.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/davila7/claude-code-templates
Git CloneAlternative
git clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/pytorch-lightning

Copy and paste this command in Claude Code to install this skill

Documentation

PyTorch Lightning - High-Level Training Framework

Quick start

PyTorch Lightning organizes PyTorch code to eliminate boilerplate while maintaining flexibility.

Installation:

pip install lightning

Convert PyTorch to Lightning (3 steps):

import lightning as L
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset

# Step 1: Define LightningModule (organize your PyTorch code)
class LitModel(L.LightningModule):
    def __init__(self, hidden_size=128):
        super().__init__()
        self.model = nn.Sequential(
            nn.Linear(28 * 28, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, 10)
        )

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        loss = nn.functional.cross_entropy(y_hat, y)
        self.log('train_loss', loss)  # Auto-logged to TensorBoard
        return loss

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=1e-3)

# Step 2: Create data
train_loader = DataLoader(train_dataset, batch_size=32)

# Step 3: Train with Trainer (handles everything else!)
trainer = L.Trainer(max_epochs=10, accelerator='gpu', devices=2)
model = LitModel()
trainer.fit(model, train_loader)

That's it! Trainer handles:

  • GPU/TPU/CPU switching
  • Distributed training (DDP, FSDP, DeepSpeed)
  • Mixed precision (FP16, BF16)
  • Gradient accumulation
  • Checkpointing
  • Logging
  • Progress bars

Common workflows

Workflow 1: From PyTorch to Lightning

Original PyTorch code:

model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
model.to('cuda')

for epoch in range(max_epochs):
    for batch in train_loader:
        batch = batch.to('cuda')
        optimizer.zero_grad()
        loss = model(batch)
        loss.backward()
        optimizer.step()

Lightning version:

class LitModel(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.model = MyModel()

    def training_step(self, batch, batch_idx):
        loss = self.model(batch)  # No .to('cuda') needed!
        return loss

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters())

# Train
trainer = L.Trainer(max_epochs=10, accelerator='gpu')
trainer.fit(LitModel(), train_loader)

Benefits: 40+ lines → 15 lines, no device management, automatic distributed

Workflow 2: Validation and testing

class LitModel(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.model = MyModel()

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        loss = nn.functional.cross_entropy(y_hat, y)
        self.log('train_loss', loss)
        return loss

    def validation_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        val_loss = nn.functional.cross_entropy(y_hat, y)
        acc = (y_hat.argmax(dim=1) == y).float().mean()
        self.log('val_loss', val_loss)
        self.log('val_acc', acc)

    def test_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        test_loss = nn.functional.cross_entropy(y_hat, y)
        self.log('test_loss', test_loss)

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=1e-3)

# Train with validation
trainer = L.Trainer(max_epochs=10)
trainer.fit(model, train_loader, val_loader)

# Test
trainer.test(model, test_loader)

Automatic features:

  • Validation runs every epoch by default
  • Metrics logged to TensorBoard
  • Best model checkpointing based on val_loss

Workflow 3: Distributed training (DDP)

# Same code as single GPU!
model = LitModel()

# 8 GPUs with DDP (automatic!)
trainer = L.Trainer(
    accelerator='gpu',
    devices=8,
    strategy='ddp'  # Or 'fsdp', 'deepspeed'
)

trainer.fit(model, train_loader)

Launch:

# Single command, Lightning handles the rest
python train.py

No changes needed:

  • Automatic data distribution
  • Gradient synchronization
  • Multi-node support (just set num_nodes=2)

Workflow 4: Callbacks for monitoring

from lightning.pytorch.callbacks import ModelCheckpoint, EarlyStopping, LearningRateMonitor

# Create callbacks
checkpoint = ModelCheckpoint(
    monitor='val_loss',
    mode='min',
    save_top_k=3,
    filename='model-{epoch:02d}-{val_loss:.2f}'
)

early_stop = EarlyStopping(
    monitor='val_loss',
    patience=5,
    mode='min'
)

lr_monitor = LearningRateMonitor(logging_interval='epoch')

# Add to Trainer
trainer = L.Trainer(
    max_epochs=100,
    callbacks=[checkpoint, early_stop, lr_monitor]
)

trainer.fit(model, train_loader, val_loader)

Result:

  • Auto-saves best 3 models
  • Stops early if no improvement for 5 epochs
  • Logs learning rate to TensorBoard

Workflow 5: Learning rate scheduling

class LitModel(L.LightningModule):
    # ... (training_step, etc.)

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)

        # Cosine annealing
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer,
            T_max=100,
            eta_min=1e-5
        )

        return {
            'optimizer': optimizer,
            'lr_scheduler': {
                'scheduler': scheduler,
                'interval': 'epoch',  # Update per epoch
                'frequency': 1
            }
        }

# Learning rate auto-logged!
trainer = L.Trainer(max_epochs=100)
trainer.fit(model, train_loader)

When to use vs alternatives

Use PyTorch Lightning when:

  • Want clean, organized code
  • Need production-ready training loops
  • Switching between single GPU, multi-GPU, TPU
  • Want built-in callbacks and logging
  • Team collaboration (standardized structure)

Key advantages:

  • Organized: Separates research code from engineering
  • Automatic: DDP, FSDP, DeepSpeed with 1 line
  • Callbacks: Modular training extensions
  • Reproducible: Less boilerplate = fewer bugs
  • Tested: 1M+ downloads/month, battle-tested

Use alternatives instead:

  • Accelerate: Minimal changes to existing code, more flexibility
  • Ray Train: Multi-node orchestration, hyperparameter tuning
  • Raw PyTorch: Maximum control, learning purposes
  • Keras: TensorFlow ecosystem

Common issues

Issue: Loss not decreasing

Check data and model setup:

# Add to training_step
def training_step(self, batch, batch_idx):
    if batch_idx == 0:
        print(f"Batch shape: {batch[0].shape}")
        print(f"Labels: {batch[1]}")
    loss = ...
    return loss

Issue: Out of memory

Reduce batch size or use gradient accumulation:

trainer = L.Trainer(
    accumulate_grad_batches=4,  # Effective batch = batch_size × 4
    precision='bf16'  # Or 'fp16', reduces memory 50%
)

Issue: Validation not running

Ensure you pass val_loader:

# WRONG
trainer.fit(model, train_loader)

# CORRECT
trainer.fit(model, train_loader, val_loader)

Issue: DDP spawns multiple processes unexpectedly

Lightning auto-detects GPUs. Explicitly set devices:

# Test on CPU first
trainer = L.Trainer(accelerator='cpu', devices=1)

# Then GPU
trainer = L.Trainer(accelerator='gpu', devices=1)

Advanced topics

Callbacks: See references/callbacks.md for EarlyStopping, ModelCheckpoint, custom callbacks, and callback hooks.

Distributed strategies: See references/distributed.md for DDP, FSDP, DeepSpeed ZeRO integration, multi-node setup.

Hyperparameter tuning: See references/hyperparameter-tuning.md for integration with Optuna, Ray Tune, and WandB sweeps.

Hardware requirements

  • CPU: Works (good for debugging)
  • Single GPU: Works
  • Multi-GPU: DDP (default), FSDP, or DeepSpeed
  • Multi-node: DDP, FSDP, DeepSpeed
  • TPU: Supported (8 cores)
  • Apple MPS: Supported

Precision options:

  • FP32 (default)
  • FP16 (V100, older GPUs)
  • BF16 (A100/H100, recommended)
  • FP8 (H100)

Resources

GitHub Repository

davila7/claude-code-templates
Path: cli-tool/components/skills/ai-research/distributed-training-pytorch-lightning
anthropicanthropic-claudeclaudeclaude-code

Related Skills

axolotl

Design

This skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.

View skill

training-llms-megatron

Design

This skill trains massive language models (2B-462B parameters) using NVIDIA's Megatron-Core framework for maximum GPU efficiency. Use it when training models over 1B parameters, requiring advanced parallelism strategies like tensor or pipeline, or needing production-ready performance. It's a proven framework used for models like Nemotron and LLaMA.

View skill

huggingface-accelerate

Development

HuggingFace Accelerate provides a unified API for adding distributed training support to PyTorch scripts with just 4 lines of code. It seamlessly integrates with DeepSpeed, FSDP, Megatron, and DDP while handling automatic device placement and mixed precision. Use this skill when you need to scale PyTorch training across multiple GPUs or nodes with minimal code changes.

View skill

pytorch-fsdp

Design

This skill provides expert guidance for implementing Fully Sharded Data Parallel (FSDP) training in PyTorch. Use it when working with parameter sharding, mixed precision, CPU offloading, or FSDP2 features during distributed training development. It helps with implementation, debugging, and best practices for large-scale model training.

View skill