Back to Skills

huggingface-accelerate

davila7
Updated Today
19 views
15,516
1,344
15,516
View on GitHub
DevelopmentDistributed TrainingHuggingFaceAccelerateDeepSpeedFSDPMixed PrecisionPyTorchDDPUnified APISimple

About

HuggingFace Accelerate provides a unified API for adding distributed training support to PyTorch scripts with just 4 lines of code. It seamlessly integrates with DeepSpeed, FSDP, Megatron, and DDP while handling automatic device placement and mixed precision. Use this skill when you need to scale PyTorch training across multiple GPUs or nodes with minimal code changes.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/davila7/claude-code-templates
Git CloneAlternative
git clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/huggingface-accelerate

Copy and paste this command in Claude Code to install this skill

Documentation

HuggingFace Accelerate - Unified Distributed Training

Quick start

Accelerate simplifies distributed training to 4 lines of code.

Installation:

pip install accelerate

Convert PyTorch script (4 lines):

import torch
+ from accelerate import Accelerator

+ accelerator = Accelerator()

  model = torch.nn.Transformer()
  optimizer = torch.optim.Adam(model.parameters())
  dataloader = torch.utils.data.DataLoader(dataset)

+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

  for batch in dataloader:
      optimizer.zero_grad()
      loss = model(batch)
-     loss.backward()
+     accelerator.backward(loss)
      optimizer.step()

Run (single command):

accelerate launch train.py

Common workflows

Workflow 1: From single GPU to multi-GPU

Original script:

# train.py
import torch

model = torch.nn.Linear(10, 2).to('cuda')
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)

for epoch in range(10):
    for batch in dataloader:
        batch = batch.to('cuda')
        optimizer.zero_grad()
        loss = model(batch).mean()
        loss.backward()
        optimizer.step()

With Accelerate (4 lines added):

# train.py
import torch
from accelerate import Accelerator  # +1

accelerator = Accelerator()  # +2

model = torch.nn.Linear(10, 2)
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)  # +3

for epoch in range(10):
    for batch in dataloader:
        # No .to('cuda') needed - automatic!
        optimizer.zero_grad()
        loss = model(batch).mean()
        accelerator.backward(loss)  # +4
        optimizer.step()

Configure (interactive):

accelerate config

Questions:

  • Which machine? (single/multi GPU/TPU/CPU)
  • How many machines? (1)
  • Mixed precision? (no/fp16/bf16/fp8)
  • DeepSpeed? (no/yes)

Launch (works on any setup):

# Single GPU
accelerate launch train.py

# Multi-GPU (8 GPUs)
accelerate launch --multi_gpu --num_processes 8 train.py

# Multi-node
accelerate launch --multi_gpu --num_processes 16 \
  --num_machines 2 --machine_rank 0 \
  --main_process_ip $MASTER_ADDR \
  train.py

Workflow 2: Mixed precision training

Enable FP16/BF16:

from accelerate import Accelerator

# FP16 (with gradient scaling)
accelerator = Accelerator(mixed_precision='fp16')

# BF16 (no scaling, more stable)
accelerator = Accelerator(mixed_precision='bf16')

# FP8 (H100+)
accelerator = Accelerator(mixed_precision='fp8')

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

# Everything else is automatic!
for batch in dataloader:
    with accelerator.autocast():  # Optional, done automatically
        loss = model(batch)
    accelerator.backward(loss)

Workflow 3: DeepSpeed ZeRO integration

Enable DeepSpeed ZeRO-2:

from accelerate import Accelerator

accelerator = Accelerator(
    mixed_precision='bf16',
    deepspeed_plugin={
        "zero_stage": 2,  # ZeRO-2
        "offload_optimizer": False,
        "gradient_accumulation_steps": 4
    }
)

# Same code as before!
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

Or via config:

accelerate config
# Select: DeepSpeed → ZeRO-2

deepspeed_config.json:

{
    "fp16": {"enabled": false},
    "bf16": {"enabled": true},
    "zero_optimization": {
        "stage": 2,
        "offload_optimizer": {"device": "cpu"},
        "allgather_bucket_size": 5e8,
        "reduce_bucket_size": 5e8
    }
}

Launch:

accelerate launch --config_file deepspeed_config.json train.py

Workflow 4: FSDP (Fully Sharded Data Parallel)

Enable FSDP:

from accelerate import Accelerator, FullyShardedDataParallelPlugin

fsdp_plugin = FullyShardedDataParallelPlugin(
    sharding_strategy="FULL_SHARD",  # ZeRO-3 equivalent
    auto_wrap_policy="TRANSFORMER_AUTO_WRAP",
    cpu_offload=False
)

accelerator = Accelerator(
    mixed_precision='bf16',
    fsdp_plugin=fsdp_plugin
)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

Or via config:

accelerate config
# Select: FSDP → Full Shard → No CPU Offload

Workflow 5: Gradient accumulation

Accumulate gradients:

from accelerate import Accelerator

accelerator = Accelerator(gradient_accumulation_steps=4)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

for batch in dataloader:
    with accelerator.accumulate(model):  # Handles accumulation
        optimizer.zero_grad()
        loss = model(batch)
        accelerator.backward(loss)
        optimizer.step()

Effective batch size: batch_size * num_gpus * gradient_accumulation_steps

When to use vs alternatives

Use Accelerate when:

  • Want simplest distributed training
  • Need single script for any hardware
  • Use HuggingFace ecosystem
  • Want flexibility (DDP/DeepSpeed/FSDP/Megatron)
  • Need quick prototyping

Key advantages:

  • 4 lines: Minimal code changes
  • Unified API: Same code for DDP, DeepSpeed, FSDP, Megatron
  • Automatic: Device placement, mixed precision, sharding
  • Interactive config: No manual launcher setup
  • Single launch: Works everywhere

Use alternatives instead:

  • PyTorch Lightning: Need callbacks, high-level abstractions
  • Ray Train: Multi-node orchestration, hyperparameter tuning
  • DeepSpeed: Direct API control, advanced features
  • Raw DDP: Maximum control, minimal abstraction

Common issues

Issue: Wrong device placement

Don't manually move to device:

# WRONG
batch = batch.to('cuda')

# CORRECT
# Accelerate handles it automatically after prepare()

Issue: Gradient accumulation not working

Use context manager:

# CORRECT
with accelerator.accumulate(model):
    optimizer.zero_grad()
    accelerator.backward(loss)
    optimizer.step()

Issue: Checkpointing in distributed

Use accelerator methods:

# Save only on main process
if accelerator.is_main_process:
    accelerator.save_state('checkpoint/')

# Load on all processes
accelerator.load_state('checkpoint/')

Issue: Different results with FSDP

Ensure same random seed:

from accelerate.utils import set_seed
set_seed(42)

Advanced topics

Megatron integration: See references/megatron-integration.md for tensor parallelism, pipeline parallelism, and sequence parallelism setup.

Custom plugins: See references/custom-plugins.md for creating custom distributed plugins and advanced configuration.

Performance tuning: See references/performance.md for profiling, memory optimization, and best practices.

Hardware requirements

  • CPU: Works (slow)
  • Single GPU: Works
  • Multi-GPU: DDP (default), DeepSpeed, or FSDP
  • Multi-node: DDP, DeepSpeed, FSDP, Megatron
  • TPU: Supported
  • Apple MPS: Supported

Launcher requirements:

  • DDP: torch.distributed.run (built-in)
  • DeepSpeed: deepspeed (pip install deepspeed)
  • FSDP: PyTorch 1.12+ (built-in)
  • Megatron: Custom setup

Resources

GitHub Repository

davila7/claude-code-templates
Path: cli-tool/components/skills/ai-research/distributed-training-accelerate
anthropicanthropic-claudeclaudeclaude-code

Related Skills

quantizing-models-bitsandbytes

Other

This skill quantizes LLMs to 8-bit or 4-bit precision using bitsandbytes, reducing memory usage by 50-75% with minimal accuracy loss for GPU-constrained environments. It supports multiple formats (INT8, NF4, FP4) and enables QLoRA training and 8-bit optimizers. Use it with HuggingFace Transformers when you need to fit larger models into limited memory or accelerate inference.

View skill

axolotl

Design

This skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.

View skill

weights-and-biases

Design

This skill enables ML experiment tracking and MLOps using Weights & Biases, automatically logging metrics and visualizing training in real-time. It helps developers optimize hyperparameters with sweeps, compare runs, and manage a versioned model registry. Use it for collaborative ML project management with full artifact lineage tracking.

View skill

training-llms-megatron

Design

This skill trains massive language models (2B-462B parameters) using NVIDIA's Megatron-Core framework for maximum GPU efficiency. Use it when training models over 1B parameters, requiring advanced parallelism strategies like tensor or pipeline, or needing production-ready performance. It's a proven framework used for models like Nemotron and LLaMA.

View skill