gptq
About
GPTQ is a 4-bit post-training quantization technique for LLMs that enables deploying large models on consumer GPUs by reducing memory usage by 4x with minimal accuracy loss. It provides faster inference and integrates with popular frameworks like transformers and PEFT for QLoRA fine-tuning. Use it when you need to run models like 70B+ parameter LLMs on limited GPU memory.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/gptqCopy and paste this command in Claude Code to install this skill
Documentation
GPTQ (Generative Pre-trained Transformer Quantization)
Post-training quantization method that compresses LLMs to 4-bit with minimal accuracy loss using group-wise quantization.
When to use GPTQ
Use GPTQ when:
- Need to fit large models (70B+) on limited GPU memory
- Want 4× memory reduction with <2% accuracy loss
- Deploying on consumer GPUs (RTX 4090, 3090)
- Need faster inference (3-4× speedup vs FP16)
Use AWQ instead when:
- Need slightly better accuracy (<1% loss)
- Have newer GPUs (Ampere, Ada)
- Want Marlin kernel support (2× faster on some GPUs)
Use bitsandbytes instead when:
- Need simple integration with transformers
- Want 8-bit quantization (less compression, better quality)
- Don't need pre-quantized model files
Quick start
Installation
# Install AutoGPTQ
pip install auto-gptq
# With Triton (Linux only, faster)
pip install auto-gptq[triton]
# With CUDA extensions (faster)
pip install auto-gptq --no-build-isolation
# Full installation
pip install auto-gptq transformers accelerate
Load pre-quantized model
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
# Load quantized model from HuggingFace
model_name = "TheBloke/Llama-2-7B-Chat-GPTQ"
model = AutoGPTQForCausalLM.from_quantized(
model_name,
device="cuda:0",
use_triton=False # Set True on Linux for speed
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Generate
prompt = "Explain quantum computing"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))
Quantize your own model
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from datasets import load_dataset
# Load model
model_name = "meta-llama/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Quantization config
quantize_config = BaseQuantizeConfig(
bits=4, # 4-bit quantization
group_size=128, # Group size (recommended: 128)
desc_act=False, # Activation order (False for CUDA kernel)
damp_percent=0.01 # Dampening factor
)
# Load model for quantization
model = AutoGPTQForCausalLM.from_pretrained(
model_name,
quantize_config=quantize_config
)
# Prepare calibration data
dataset = load_dataset("c4", split="train", streaming=True)
calibration_data = [
tokenizer(example["text"])["input_ids"][:512]
for example in dataset.take(128)
]
# Quantize
model.quantize(calibration_data)
# Save quantized model
model.save_quantized("llama-2-7b-gptq")
tokenizer.save_pretrained("llama-2-7b-gptq")
# Push to HuggingFace
model.push_to_hub("username/llama-2-7b-gptq")
Group-wise quantization
How GPTQ works:
- Group weights: Divide each weight matrix into groups (typically 128 elements)
- Quantize per-group: Each group has its own scale/zero-point
- Minimize error: Uses Hessian information to minimize quantization error
- Result: 4-bit weights with near-FP16 accuracy
Group size trade-off:
| Group Size | Model Size | Accuracy | Speed | Recommendation |
|---|---|---|---|---|
| -1 (per-column) | Smallest | Best | Slowest | Research only |
| 32 | Smaller | Better | Slower | High accuracy needed |
| 128 | Medium | Good | Fast | Recommended default |
| 256 | Larger | Lower | Faster | Speed critical |
| 1024 | Largest | Lowest | Fastest | Not recommended |
Example:
Weight matrix: [1024, 4096] = 4.2M elements
Group size = 128:
- Groups: 4.2M / 128 = 32,768 groups
- Each group: own 4-bit scale + zero-point
- Result: Better granularity → better accuracy
Quantization configurations
Standard 4-bit (recommended)
from auto_gptq import BaseQuantizeConfig
config = BaseQuantizeConfig(
bits=4, # 4-bit quantization
group_size=128, # Standard group size
desc_act=False, # Faster CUDA kernel
damp_percent=0.01 # Dampening factor
)
Performance:
- Memory: 4× reduction (70B model: 140GB → 35GB)
- Accuracy: ~1.5% perplexity increase
- Speed: 3-4× faster than FP16
High accuracy (3-bit with larger groups)
config = BaseQuantizeConfig(
bits=3, # 3-bit (more compression)
group_size=128, # Keep standard group size
desc_act=True, # Better accuracy (slower)
damp_percent=0.01
)
Trade-off:
- Memory: 5× reduction
- Accuracy: ~3% perplexity increase
- Speed: 5× faster (but less accurate)
Maximum accuracy (4-bit with small groups)
config = BaseQuantizeConfig(
bits=4,
group_size=32, # Smaller groups (better accuracy)
desc_act=True, # Activation reordering
damp_percent=0.005 # Lower dampening
)
Trade-off:
- Memory: 3.5× reduction (slightly larger)
- Accuracy: ~0.8% perplexity increase (best)
- Speed: 2-3× faster (kernel overhead)
Kernel backends
ExLlamaV2 (default, fastest)
model = AutoGPTQForCausalLM.from_quantized(
model_name,
device="cuda:0",
use_exllama=True, # Use ExLlamaV2
exllama_config={"version": 2}
)
Performance: 1.5-2× faster than Triton
Marlin (Ampere+ GPUs)
# Quantize with Marlin format
config = BaseQuantizeConfig(
bits=4,
group_size=128,
desc_act=False # Required for Marlin
)
model.quantize(calibration_data, use_marlin=True)
# Load with Marlin
model = AutoGPTQForCausalLM.from_quantized(
model_name,
device="cuda:0",
use_marlin=True # 2× faster on A100/H100
)
Requirements:
- NVIDIA Ampere or newer (A100, H100, RTX 40xx)
- Compute capability ≥ 8.0
Triton (Linux only)
model = AutoGPTQForCausalLM.from_quantized(
model_name,
device="cuda:0",
use_triton=True # Linux only
)
Performance: 1.2-1.5× faster than CUDA backend
Integration with transformers
Direct transformers usage
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load quantized model (transformers auto-detects GPTQ)
model = AutoModelForCausalLM.from_pretrained(
"TheBloke/Llama-2-13B-Chat-GPTQ",
device_map="auto",
trust_remote_code=False
)
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Llama-2-13B-Chat-GPTQ")
# Use like any transformers model
inputs = tokenizer("Hello", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
QLoRA fine-tuning (GPTQ + LoRA)
from transformers import AutoModelForCausalLM
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model
# Load GPTQ model
model = AutoModelForCausalLM.from_pretrained(
"TheBloke/Llama-2-7B-GPTQ",
device_map="auto"
)
# Prepare for LoRA training
model = prepare_model_for_kbit_training(model)
# LoRA config
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
# Add LoRA adapters
model = get_peft_model(model, lora_config)
# Fine-tune (memory efficient!)
# 70B model trainable on single A100 80GB
Performance benchmarks
Memory reduction
| Model | FP16 | GPTQ 4-bit | Reduction |
|---|---|---|---|
| Llama 2-7B | 14 GB | 3.5 GB | 4× |
| Llama 2-13B | 26 GB | 6.5 GB | 4× |
| Llama 2-70B | 140 GB | 35 GB | 4× |
| Llama 3-405B | 810 GB | 203 GB | 4× |
Enables:
- 70B on single A100 80GB (vs 2× A100 needed for FP16)
- 405B on 3× A100 80GB (vs 11× A100 needed for FP16)
- 13B on RTX 4090 24GB (vs OOM with FP16)
Inference speed (Llama 2-7B, A100)
| Precision | Tokens/sec | vs FP16 |
|---|---|---|
| FP16 | 25 tok/s | 1× |
| GPTQ 4-bit (CUDA) | 85 tok/s | 3.4× |
| GPTQ 4-bit (ExLlama) | 105 tok/s | 4.2× |
| GPTQ 4-bit (Marlin) | 120 tok/s | 4.8× |
Accuracy (perplexity on WikiText-2)
| Model | FP16 | GPTQ 4-bit (g=128) | Degradation |
|---|---|---|---|
| Llama 2-7B | 5.47 | 5.55 | +1.5% |
| Llama 2-13B | 4.88 | 4.95 | +1.4% |
| Llama 2-70B | 3.32 | 3.38 | +1.8% |
Excellent quality preservation - less than 2% degradation!
Common patterns
Multi-GPU deployment
# Automatic device mapping
model = AutoGPTQForCausalLM.from_quantized(
"TheBloke/Llama-2-70B-GPTQ",
device_map="auto", # Automatically split across GPUs
max_memory={0: "40GB", 1: "40GB"} # Limit per GPU
)
# Manual device mapping
device_map = {
"model.embed_tokens": 0,
"model.layers.0-39": 0, # First 40 layers on GPU 0
"model.layers.40-79": 1, # Last 40 layers on GPU 1
"model.norm": 1,
"lm_head": 1
}
model = AutoGPTQForCausalLM.from_quantized(
model_name,
device_map=device_map
)
CPU offloading
# Offload some layers to CPU (for very large models)
model = AutoGPTQForCausalLM.from_quantized(
"TheBloke/Llama-2-405B-GPTQ",
device_map="auto",
max_memory={
0: "80GB", # GPU 0
1: "80GB", # GPU 1
2: "80GB", # GPU 2
"cpu": "200GB" # Offload overflow to CPU
}
)
Batch inference
# Process multiple prompts efficiently
prompts = [
"Explain AI",
"Explain ML",
"Explain DL"
]
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to("cuda")
outputs = model.generate(
**inputs,
max_new_tokens=100,
pad_token_id=tokenizer.eos_token_id
)
for i, output in enumerate(outputs):
print(f"Prompt {i}: {tokenizer.decode(output)}")
Finding pre-quantized models
TheBloke on HuggingFace:
- https://huggingface.co/TheBloke
- 1000+ models in GPTQ format
- Multiple group sizes (32, 128)
- Both CUDA and Marlin formats
Search:
# Find GPTQ models on HuggingFace
https://huggingface.co/models?library=gptq
Download:
from auto_gptq import AutoGPTQForCausalLM
# Automatically downloads from HuggingFace
model = AutoGPTQForCausalLM.from_quantized(
"TheBloke/Llama-2-70B-Chat-GPTQ",
device="cuda:0"
)
Supported models
- LLaMA family: Llama 2, Llama 3, Code Llama
- Mistral: Mistral 7B, Mixtral 8x7B, 8x22B
- Qwen: Qwen, Qwen2, QwQ
- DeepSeek: V2, V3
- Phi: Phi-2, Phi-3
- Yi, Falcon, BLOOM, OPT
- 100+ models on HuggingFace
References
- Calibration Guide - Dataset selection, quantization process, quality optimization
- Integration Guide - Transformers, PEFT, vLLM, TensorRT-LLM
- Troubleshooting - Common issues, performance optimization
Resources
- GitHub: https://github.com/AutoGPTQ/AutoGPTQ
- Paper: GPTQ: Accurate Post-Training Quantization (arXiv:2210.17323)
- Models: https://huggingface.co/models?library=gptq
- Discord: https://discord.gg/autogptq
GitHub Repository
Related Skills
quantizing-models-bitsandbytes
OtherThis skill quantizes LLMs to 8-bit or 4-bit precision using bitsandbytes, reducing memory usage by 50-75% with minimal accuracy loss for GPU-constrained environments. It supports multiple formats (INT8, NF4, FP4) and enables QLoRA training and 8-bit optimizers. Use it with HuggingFace Transformers when you need to fit larger models into limited memory or accelerate inference.
speculative-decoding
MetaThis Claude Skill accelerates LLM inference using speculative decoding techniques like Medusa and lookahead decoding, achieving 1.5-3.6× speedups. It's designed for developers optimizing latency in real-time applications or deploying models on limited compute. The implementation covers draft models, tree-based attention, and parallel token generation strategies.
axolotl
DesignThis skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.
unsloth
DesignThis skill provides expert guidance for fast fine-tuning with Unsloth, offering 2-5x faster training and 50-80% memory reduction. It helps developers implement and debug LoRA/QLoRA optimizations for models like Llama and Mistral. Use it when working with Unsloth's APIs, features, or best practices for efficient model training.
