Back to Skills

long-context

davila7
Updated Today
16 views
15,516
1,344
15,516
View on GitHub
DocumentationEmerging TechniquesLong ContextRoPEYaRNALiBiPosition InterpolationExtended ContextRotary EmbeddingsAttention BiasContext ExtensionPositional Encoding

About

This skill enables extending transformer model context windows beyond their original limits using techniques like RoPE, YaRN, and position interpolation. Use it when processing long documents (32k-128k+ tokens) or adapting pre-trained models for longer sequences. It provides implementations for rotary embeddings, attention biases, and interpolation strategies to handle extended positional encodings efficiently.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/davila7/claude-code-templates
Git CloneAlternative
git clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/long-context

Copy and paste this command in Claude Code to install this skill

Documentation

Long Context: Extending Transformer Context Windows

When to Use This Skill

Use Long Context techniques when you need to:

  • Process long documents (32k, 64k, 128k+ tokens) with transformer models
  • Extend context windows of pre-trained models (LLaMA, Mistral, etc.)
  • Implement efficient positional encodings (RoPE, ALiBi)
  • Train models with length extrapolation capabilities
  • Deploy models that handle variable-length inputs efficiently
  • Fine-tune existing models for longer contexts with minimal compute

Key Techniques: RoPE (Rotary Position Embeddings), YaRN, ALiBi (Attention with Linear Biases), Position Interpolation

Papers: RoFormer (arXiv 2104.09864), YaRN (arXiv 2309.00071), ALiBi (arXiv 2108.12409), Position Interpolation (arXiv 2306.15595)

Installation

# HuggingFace Transformers (includes RoPE, YaRN support)
pip install transformers torch

# For custom implementations
pip install einops  # Tensor operations
pip install rotary-embedding-torch  # Standalone RoPE

# Optional: FlashAttention for efficiency
pip install flash-attn --no-build-isolation

Quick Start

RoPE (Rotary Position Embeddings)

import torch
import torch.nn as nn

class RotaryEmbedding(nn.Module):
    """Rotary Position Embeddings (RoPE)."""

    def __init__(self, dim, max_seq_len=8192, base=10000):
        super().__init__()
        # Compute inverse frequencies
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.max_seq_len = max_seq_len

    def forward(self, seq_len, device):
        # Position indices
        t = torch.arange(seq_len, device=device).type_as(self.inv_freq)

        # Compute frequencies
        freqs = torch.outer(t, self.inv_freq)  # (seq_len, dim/2)

        # Compute sin and cos
        emb = torch.cat((freqs, freqs), dim=-1)  # (seq_len, dim)
        return emb.cos(), emb.sin()

def rotate_half(x):
    """Rotate half the hidden dimensions."""
    x1, x2 = x.chunk(2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb(q, k, cos, sin):
    """Apply rotary embeddings to queries and keys."""
    # q, k shape: (batch, heads, seq_len, dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

# Usage
rope = RotaryEmbedding(dim=64, max_seq_len=8192)
cos, sin = rope(seq_len=2048, device='cuda')

# In attention layer
q_rotated, k_rotated = apply_rotary_pos_emb(query, key, cos, sin)

ALiBi (Attention with Linear Biases)

def get_alibi_slopes(num_heads):
    """Get ALiBi slope values for each attention head."""
    def get_slopes_power_of_2(n):
        start = 2 ** (-(2 ** -(math.log2(n) - 3)))
        ratio = start
        return [start * (ratio ** i) for i in range(n)]

    if math.log2(num_heads).is_integer():
        return get_slopes_power_of_2(num_heads)
    else:
        # Closest power of 2
        closest_power = 2 ** math.floor(math.log2(num_heads))
        slopes = get_slopes_power_of_2(closest_power)
        # Add extra slopes
        extra = get_slopes_power_of_2(2 * closest_power)
        slopes.extend(extra[0::2][:num_heads - closest_power])
        return slopes

def create_alibi_bias(seq_len, num_heads):
    """Create ALiBi attention bias."""
    # Distance matrix
    context_position = torch.arange(seq_len)
    memory_position = torch.arange(seq_len)
    relative_position = memory_position[None, :] - context_position[:, None]

    # Get slopes
    slopes = torch.tensor(get_alibi_slopes(num_heads))

    # Apply slopes to distances
    alibi = slopes[:, None, None] * relative_position[None, :, :]
    return alibi  # (num_heads, seq_len, seq_len)

# Usage in attention
num_heads = 8
seq_len = 2048
alibi_bias = create_alibi_bias(seq_len, num_heads).to('cuda')

# Add bias to attention scores
# attn_scores shape: (batch, num_heads, seq_len, seq_len)
attn_scores = attn_scores + alibi_bias
attn_weights = torch.softmax(attn_scores, dim=-1)

Position Interpolation for LLaMA

from transformers import LlamaForCausalLM, LlamaTokenizer

# Original context: 2048 tokens
model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")

# Extend to 32k with position interpolation
# Modify RoPE base frequency
model.config.rope_scaling = {
    "type": "linear",
    "factor": 16.0  # 2048 * 16 = 32768
}

# Or use dynamic scaling
model.config.rope_scaling = {
    "type": "dynamic",
    "factor": 16.0
}

# Fine-tune with long documents (minimal steps needed)
# Position interpolation works out-of-the-box after this config change

Core Concepts

1. RoPE (Rotary Position Embeddings)

How it works:

  • Encodes absolute position via rotation matrix
  • Provides relative position dependency in attention
  • Enables length extrapolation

Mathematical formulation:

q_m = (W_q * x_m) * e^(imθ)
k_n = (W_k * x_n) * e^(inθ)

where θ_j = base^(-2j/d) for j ∈ [0, d/2)

Advantages:

  • Decaying inter-token dependency with distance
  • Compatible with linear attention
  • Better extrapolation than absolute position encodings

2. YaRN (Yet another RoPE extensioN)

Key innovation:

  • NTK-aware interpolation (Neural Tangent Kernel)
  • Attention temperature scaling
  • Efficient context extension (10× less tokens vs baselines)

Parameters:

# YaRN configuration
yarn_config = {
    "scale": 16,                    # Extension factor
    "original_max_position": 2048,  # Base context
    "extrapolation_factor": 1.0,    # NTK parameter
    "attn_factor": 1.0,             # Attention scaling
    "beta_fast": 32,                # High-frequency scale
    "beta_slow": 1,                 # Low-frequency scale
}

Performance:

  • Extends LLaMA to 128k tokens
  • 2.5× less training steps than baselines
  • State-of-the-art context window extension

3. ALiBi (Attention with Linear Biases)

Core idea:

  • No positional embeddings added to tokens
  • Apply distance penalty directly to attention scores
  • Bias proportional to key-query distance

Formula:

attention_bias[i, j] = -m * |i - j|

where m = slope for each attention head

Advantages:

  • 11% faster training vs sinusoidal embeddings
  • 11% less memory usage
  • Strong length extrapolation (train 1k, test 2k+)
  • Inductive bias towards recency

4. Position Interpolation

Technique:

  • Linearly down-scale position indices
  • Interpolate within trained range (vs extrapolate beyond)
  • Minimal fine-tuning required

Formula:

# Original: position indices [0, 1, 2, ..., L]
# Extended: position indices [0, 0.5, 1.0, ..., L/2]
# (for 2× extension)

scaled_position[i] = i / extension_factor

Results:

  • LLaMA 7B-65B extended to 32k tokens
  • 1000 fine-tuning steps sufficient
  • 600× better stability than extrapolation

Method Comparison

MethodMax ContextTraining NeededMemoryExtrapolationBest For
RoPE8k-32kFull pre-trainingModerateGoodNew models
YaRN32k-128kMinimal (10× efficient)ModerateExcellentExtending existing models
ALiBiUnlimitedFull pre-trainingLow (-11%)ExcellentTraining from scratch
Position Interpolation32k+Minimal (1k steps)ModeratePoor (by design)Quick extension

Implementation Patterns

HuggingFace Transformers Integration

from transformers import AutoModelForCausalLM, AutoConfig

# RoPE with YaRN scaling
config = AutoConfig.from_pretrained("mistralai/Mistral-7B-v0.1")
config.rope_scaling = {
    "type": "yarn",
    "factor": 8.0,
    "original_max_position_embeddings": 8192,
    "attention_factor": 1.0
}

model = AutoModelForCausalLM.from_config(config)

# Position interpolation (simpler)
config.rope_scaling = {
    "type": "linear",
    "factor": 4.0
}

# Dynamic scaling (adjusts based on input length)
config.rope_scaling = {
    "type": "dynamic",
    "factor": 8.0
}

Custom RoPE Implementation

class LongContextAttention(nn.Module):
    """Multi-head attention with RoPE."""

    def __init__(self, hidden_size, num_heads, max_seq_len=32768):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = hidden_size // num_heads

        # Q, K, V projections
        self.q_proj = nn.Linear(hidden_size, hidden_size)
        self.k_proj = nn.Linear(hidden_size, hidden_size)
        self.v_proj = nn.Linear(hidden_size, hidden_size)
        self.o_proj = nn.Linear(hidden_size, hidden_size)

        # RoPE
        self.rotary_emb = RotaryEmbedding(
            dim=self.head_dim,
            max_seq_len=max_seq_len
        )

    def forward(self, hidden_states):
        batch_size, seq_len, _ = hidden_states.shape

        # Project to Q, K, V
        q = self.q_proj(hidden_states)
        k = self.k_proj(hidden_states)
        v = self.v_proj(hidden_states)

        # Reshape for multi-head
        q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        k = k.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        v = v.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)

        # Apply RoPE
        cos, sin = self.rotary_emb(seq_len, device=hidden_states.device)
        q, k = apply_rotary_pos_emb(q, k, cos, sin)

        # Standard attention
        attn_output = F.scaled_dot_product_attention(q, k, v)

        # Reshape and project
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(batch_size, seq_len, -1)
        output = self.o_proj(attn_output)

        return output

Fine-tuning for Long Context

Minimal Fine-tuning (Position Interpolation)

from transformers import Trainer, TrainingArguments

# Extend model config
model.config.max_position_embeddings = 32768
model.config.rope_scaling = {"type": "linear", "factor": 16.0}

# Training args (minimal steps needed)
training_args = TrainingArguments(
    output_dir="./llama-32k",
    num_train_epochs=1,
    max_steps=1000,           # Only 1000 steps!
    per_device_train_batch_size=1,
    gradient_accumulation_steps=16,
    learning_rate=2e-5,
    warmup_steps=100,
    logging_steps=10,
    save_steps=500,
)

# Train on long documents
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=long_document_dataset,  # 32k token sequences
)

trainer.train()

YaRN Fine-tuning

# Clone YaRN implementation
git clone https://github.com/jquesnelle/yarn
cd yarn

# Fine-tune LLaMA with YaRN
python scripts/train.py \
    --model meta-llama/Llama-2-7b-hf \
    --scale 16 \
    --rope_theta 10000 \
    --max_length 32768 \
    --batch_size 1 \
    --gradient_accumulation 16 \
    --steps 400 \
    --learning_rate 2e-5

Best Practices

1. Choose the Right Method

# For NEW models (training from scratch)
use_method = "ALiBi"  # Best extrapolation, lowest memory

# For EXTENDING existing RoPE models
use_method = "YaRN"  # Most efficient extension (10× less data)

# For QUICK extension with minimal compute
use_method = "Position Interpolation"  # 1000 steps

# For MODERATE extension with good efficiency
use_method = "Linear RoPE Scaling"  # Built-in, simple

2. Scaling Factor Selection

# Conservative (safer, better quality)
scaling_factor = 2.0  # 8k → 16k

# Moderate (good balance)
scaling_factor = 4.0  # 8k → 32k

# Aggressive (requires more fine-tuning)
scaling_factor = 8.0  # 8k → 64k
scaling_factor = 16.0  # 8k → 128k

# Rule: Larger factors need more fine-tuning steps
steps_needed = 100 * scaling_factor  # Rough estimate

3. Fine-tuning Data

# ✅ Good: Long documents matching target length
train_data = [
    {"text": long_doc_32k_tokens},  # Full 32k
    {"text": long_doc_24k_tokens},  # Varied lengths
    {"text": long_doc_16k_tokens},
]

# ❌ Bad: Short documents (won't learn long context)
train_data = [
    {"text": short_doc_2k_tokens},
]

# Use datasets like:
# - PG-19 (books, long texts)
# - arXiv papers
# - Long-form conversations
# - GitHub repositories (concatenated files)

4. Avoid Common Pitfalls

# ❌ Bad: Applying position interpolation without fine-tuning
model.config.rope_scaling = {"type": "linear", "factor": 16.0}
# Model will perform poorly without fine-tuning!

# ✅ Good: Fine-tune after scaling
model.config.rope_scaling = {"type": "linear", "factor": 16.0}
fine_tune(model, long_documents, steps=1000)

# ❌ Bad: Too aggressive scaling without data
scale_to_1M_tokens()  # Won't work without massive fine-tuning

# ✅ Good: Incremental scaling
# 8k → 16k → 32k → 64k (fine-tune at each step)

Production Deployment

Inference with Long Context

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load long-context model
model = AutoModelForCausalLM.from_pretrained(
    "togethercomputer/LLaMA-2-7B-32K",  # 32k context
    torch_dtype=torch.float16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K")

# Process long document
long_text = "..." * 30000  # 30k tokens
inputs = tokenizer(long_text, return_tensors="pt", truncation=False).to('cuda')

# Generate
outputs = model.generate(
    **inputs,
    max_new_tokens=512,
    temperature=0.7,
)

response = tokenizer.decode(outputs[0], skip_special_tokens=True)

Memory Optimization

# Use gradient checkpointing for fine-tuning
model.gradient_checkpointing_enable()

# Use Flash Attention 2
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-7b-hf",
    attn_implementation="flash_attention_2",  # 2-3× faster
    torch_dtype=torch.float16
)

# Use paged attention (vLLM)
from vllm import LLM

llm = LLM(
    model="togethercomputer/LLaMA-2-7B-32K",
    max_model_len=32768,  # 32k context
    gpu_memory_utilization=0.9
)

Resources

See Also

  • references/rope.md - Detailed RoPE implementation and theory
  • references/extension_methods.md - YaRN, ALiBi, Position Interpolation comparisons
  • references/fine_tuning.md - Complete fine-tuning guide for context extension

GitHub Repository

davila7/claude-code-templates
Path: cli-tool/components/skills/ai-research/emerging-techniques-long-context
anthropicanthropic-claudeclaudeclaude-code

Related Skills

speculative-decoding

Meta

This Claude Skill accelerates LLM inference using speculative decoding techniques like Medusa and lookahead decoding, achieving 1.5-3.6× speedups. It's designed for developers optimizing latency in real-time applications or deploying models on limited compute. The implementation covers draft models, tree-based attention, and parallel token generation strategies.

View skill

knowledge-distillation

Other

This skill enables model compression via knowledge distillation, transferring capabilities from larger teacher models to smaller student models. It's ideal for deploying cost-efficient models while retaining performance or transferring GPT-4-level abilities to open-source alternatives. Key techniques include temperature scaling, soft targets, and logit distillation.

View skill

model-pruning

Other

This skill compresses large language models using pruning techniques like Wanda and SparseGPT to reduce model size by 40-60% and accelerate inference 2-4× with minimal accuracy loss. It enables one-shot compression without retraining and supports various sparsity patterns including N:M for hardware acceleration. Use it when deploying models on constrained hardware or needing faster inference with maintained performance.

View skill

model-merging

Meta

This skill enables merging multiple fine-tuned models using mergekit to combine capabilities without retraining. It's ideal for creating specialized models by blending expertise (like math, coding, and chat) and for rapid experimentation with variants. The skill covers key techniques including SLERP, TIES-Merging, DARE, and Task Arithmetic.

View skill