model-merging
About
This skill enables merging multiple fine-tuned models using mergekit to combine capabilities without retraining. It's ideal for creating specialized models by blending expertise (like math, coding, and chat) and for rapid experimentation with variants. The skill covers key techniques including SLERP, TIES-Merging, DARE, and Task Arithmetic.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/model-mergingCopy and paste this command in Claude Code to install this skill
Documentation
Model Merging: Combining Pre-trained Models
When to Use This Skill
Use Model Merging when you need to:
- Combine capabilities from multiple fine-tuned models without retraining
- Create specialized models by blending domain-specific expertise (math + coding + chat)
- Improve performance beyond single models (often +5-10% on benchmarks)
- Reduce training costs - no GPUs needed, merges run on CPU
- Experiment rapidly - create new model variants in minutes, not days
- Preserve multiple skills - merge without catastrophic forgetting
Success Stories: Marcoro14-7B-slerp (best on Open LLM Leaderboard 02/2024), many top HuggingFace models use merging
Tools: mergekit (Arcee AI), LazyMergekit, Model Soup
Installation
# Install mergekit
git clone https://github.com/arcee-ai/mergekit.git
cd mergekit
pip install -e .
# Or via pip
pip install mergekit
# Optional: Transformer library
pip install transformers torch
Quick Start
Simple Linear Merge
# config.yml - Merge two models with equal weights
merge_method: linear
models:
- model: mistralai/Mistral-7B-v0.1
parameters:
weight: 0.5
- model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
weight: 0.5
dtype: bfloat16
# Run merge
mergekit-yaml config.yml ./merged-model --cuda
# Use merged model
python -m transformers.models.auto --model_name_or_path ./merged-model
SLERP Merge (Best for 2 Models)
# config.yml - Spherical interpolation
merge_method: slerp
slices:
- sources:
- model: mistralai/Mistral-7B-v0.1
layer_range: [0, 32]
- model: teknium/OpenHermes-2.5-Mistral-7B
layer_range: [0, 32]
parameters:
t: 0.5 # Interpolation factor (0=model1, 1=model2)
dtype: bfloat16
Core Concepts
1. Merge Methods
Linear (Model Soup)
- Simple weighted average of parameters
- Fast, works well for similar models
- Can merge 2+ models
merged_weights = w1 * model1_weights + w2 * model2_weights + w3 * model3_weights
# where w1 + w2 + w3 = 1
SLERP (Spherical Linear Interpolation)
- Interpolates along sphere in weight space
- Preserves magnitude of weight vectors
- Best for merging 2 models
- Smoother than linear
# SLERP formula
merged = (sin((1-t)*θ) / sin(θ)) * model1 + (sin(t*θ) / sin(θ)) * model2
# where θ = arccos(dot(model1, model2))
# t ∈ [0, 1]
Task Arithmetic
- Extract "task vectors" (fine-tuned - base)
- Combine task vectors, add to base
- Good for merging multiple specialized models
# Task vector
task_vector = finetuned_model - base_model
# Merge multiple task vectors
merged = base_model + α₁*task_vector₁ + α₂*task_vector₂
TIES-Merging
- Task arithmetic + sparsification
- Resolves sign conflicts in parameters
- Best for merging many task-specific models
DARE (Drop And REscale)
- Randomly drops fine-tuned parameters
- Rescales remaining parameters
- Reduces redundancy, maintains performance
2. Configuration Structure
# Basic structure
merge_method: <method> # linear, slerp, ties, dare_ties, task_arithmetic
base_model: <path> # Optional: base model for task arithmetic
models:
- model: <path/to/model1>
parameters:
weight: <float> # Merge weight
density: <float> # For TIES/DARE
- model: <path/to/model2>
parameters:
weight: <float>
parameters:
# Method-specific parameters
dtype: <dtype> # bfloat16, float16, float32
# Optional
slices: # Layer-wise merging
tokenizer: # Tokenizer configuration
Merge Methods Guide
Linear Merge
Best for: Simple model combinations, equal weighting
merge_method: linear
models:
- model: WizardLM/WizardMath-7B-V1.1
parameters:
weight: 0.4
- model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
weight: 0.3
- model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
parameters:
weight: 0.3
dtype: bfloat16
SLERP Merge
Best for: Two models, smooth interpolation
merge_method: slerp
slices:
- sources:
- model: mistralai/Mistral-7B-v0.1
layer_range: [0, 32]
- model: teknium/OpenHermes-2.5-Mistral-7B
layer_range: [0, 32]
parameters:
t: 0.5 # 0.0 = first model, 1.0 = second model
dtype: bfloat16
Layer-specific SLERP:
merge_method: slerp
slices:
- sources:
- model: model_a
layer_range: [0, 32]
- model: model_b
layer_range: [0, 32]
parameters:
t:
- filter: self_attn # Attention layers
value: 0.3
- filter: mlp # MLP layers
value: 0.7
- value: 0.5 # Default for other layers
dtype: bfloat16
Task Arithmetic
Best for: Combining specialized skills
merge_method: task_arithmetic
base_model: mistralai/Mistral-7B-v0.1
models:
- model: WizardLM/WizardMath-7B-V1.1 # Math
parameters:
weight: 0.5
- model: teknium/OpenHermes-2.5-Mistral-7B # Chat
parameters:
weight: 0.3
- model: ajibawa-2023/Code-Mistral-7B # Code
parameters:
weight: 0.2
dtype: bfloat16
TIES-Merging
Best for: Many models, resolving conflicts
merge_method: ties
base_model: mistralai/Mistral-7B-v0.1
models:
- model: WizardLM/WizardMath-7B-V1.1
parameters:
density: 0.5 # Keep top 50% of parameters
weight: 1.0
- model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
density: 0.5
weight: 1.0
- model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
parameters:
density: 0.5
weight: 1.0
parameters:
normalize: true
dtype: bfloat16
DARE Merge
Best for: Reducing redundancy
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
models:
- model: WizardLM/WizardMath-7B-V1.1
parameters:
density: 0.5 # Drop 50% of deltas
weight: 0.6
- model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
density: 0.5
weight: 0.4
parameters:
int8_mask: true # Use int8 for masks (saves memory)
dtype: bfloat16
Advanced Patterns
Layer-wise Merging
# Different models for different layers
merge_method: passthrough
slices:
- sources:
- model: mistralai/Mistral-7B-v0.1
layer_range: [0, 16] # First half
- sources:
- model: teknium/OpenHermes-2.5-Mistral-7B
layer_range: [16, 32] # Second half
dtype: bfloat16
MoE from Merged Models
# Create Mixture of Experts
merge_method: moe
base_model: mistralai/Mistral-7B-v0.1
experts:
- source_model: WizardLM/WizardMath-7B-V1.1
positive_prompts:
- "math"
- "calculate"
- source_model: teknium/OpenHermes-2.5-Mistral-7B
positive_prompts:
- "chat"
- "conversation"
- source_model: ajibawa-2023/Code-Mistral-7B
positive_prompts:
- "code"
- "python"
dtype: bfloat16
Tokenizer Merging
merge_method: linear
models:
- model: mistralai/Mistral-7B-v0.1
- model: custom/specialized-model
tokenizer:
source: "union" # Combine vocabularies from both models
tokens:
<|special_token|>:
source: "custom/specialized-model"
Best Practices
1. Model Compatibility
# ✅ Good: Same architecture
models = [
"mistralai/Mistral-7B-v0.1",
"teknium/OpenHermes-2.5-Mistral-7B", # Both Mistral 7B
]
# ❌ Bad: Different architectures
models = [
"meta-llama/Llama-2-7b-hf", # Llama
"mistralai/Mistral-7B-v0.1", # Mistral (incompatible!)
]
2. Weight Selection
# ✅ Good: Weights sum to 1.0
models:
- model: model_a
parameters:
weight: 0.6
- model: model_b
parameters:
weight: 0.4 # 0.6 + 0.4 = 1.0
# ⚠️ Acceptable: Weights don't sum to 1 (for task arithmetic)
models:
- model: model_a
parameters:
weight: 0.8
- model: model_b
parameters:
weight: 0.8 # May boost performance
3. Method Selection
# Choose merge method based on use case:
# 2 models, smooth blend → SLERP
merge_method = "slerp"
# 3+ models, simple average → Linear
merge_method = "linear"
# Multiple task-specific models → Task Arithmetic or TIES
merge_method = "ties"
# Want to reduce redundancy → DARE
merge_method = "dare_ties"
4. Density Tuning (TIES/DARE)
# Start conservative (keep more parameters)
parameters:
density: 0.8 # Keep 80%
# If performance good, increase sparsity
parameters:
density: 0.5 # Keep 50%
# If performance degrades, reduce sparsity
parameters:
density: 0.9 # Keep 90%
5. Layer-specific Merging
# Preserve base model's beginning and end
merge_method: passthrough
slices:
- sources:
- model: base_model
layer_range: [0, 2] # Keep first layers
- sources:
- model: merged_middle # Merge middle layers
layer_range: [2, 30]
- sources:
- model: base_model
layer_range: [30, 32] # Keep last layers
Evaluation & Testing
Benchmark Merged Models
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load merged model
model = AutoModelForCausalLM.from_pretrained("./merged-model")
tokenizer = AutoTokenizer.from_pretrained("./merged-model")
# Test on various tasks
test_prompts = {
"math": "Calculate: 25 * 17 =",
"code": "Write a Python function to reverse a string:",
"chat": "What is the capital of France?",
}
for task, prompt in test_prompts.items():
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(f"{task}: {tokenizer.decode(outputs[0])}")
Common Benchmarks
- Open LLM Leaderboard: General capabilities
- MT-Bench: Multi-turn conversation
- MMLU: Multitask accuracy
- HumanEval: Code generation
- GSM8K: Math reasoning
Production Deployment
Save and Upload
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load merged model
model = AutoModelForCausalLM.from_pretrained("./merged-model")
tokenizer = AutoTokenizer.from_pretrained("./merged-model")
# Upload to HuggingFace Hub
model.push_to_hub("username/my-merged-model")
tokenizer.push_to_hub("username/my-merged-model")
Quantize Merged Model
# Quantize with GGUF
python convert.py ./merged-model --outtype f16 --outfile merged-model.gguf
# Quantize with GPTQ
python quantize_gptq.py ./merged-model --bits 4 --group_size 128
Common Pitfalls
❌ Pitfall 1: Merging Incompatible Models
# Wrong: Different architectures
models:
- model: meta-llama/Llama-2-7b # Llama architecture
- model: mistralai/Mistral-7B # Mistral architecture
Fix: Only merge models with same architecture
❌ Pitfall 2: Over-weighting One Model
# Suboptimal: One model dominates
models:
- model: model_a
parameters:
weight: 0.95 # Too high
- model: model_b
parameters:
weight: 0.05 # Too low
Fix: Use more balanced weights (0.3-0.7 range)
❌ Pitfall 3: Not Evaluating
# Wrong: Merge and deploy without testing
mergekit-yaml config.yml ./merged-model
# Deploy immediately (risky!)
Fix: Always benchmark before deploying
Resources
- mergekit GitHub: https://github.com/arcee-ai/mergekit
- HuggingFace Tutorial: https://huggingface.co/blog/mlabonne/merge-models
- LazyMergekit: Automated merging notebook
- TIES Paper: https://arxiv.org/abs/2306.01708
- DARE Paper: https://arxiv.org/abs/2311.03099
See Also
references/methods.md- Deep dive into merge algorithmsreferences/examples.md- Real-world merge configurationsreferences/evaluation.md- Benchmarking and testing strategies
GitHub Repository
Related Skills
speculative-decoding
MetaThis Claude Skill accelerates LLM inference using speculative decoding techniques like Medusa and lookahead decoding, achieving 1.5-3.6× speedups. It's designed for developers optimizing latency in real-time applications or deploying models on limited compute. The implementation covers draft models, tree-based attention, and parallel token generation strategies.
knowledge-distillation
OtherThis skill enables model compression via knowledge distillation, transferring capabilities from larger teacher models to smaller student models. It's ideal for deploying cost-efficient models while retaining performance or transferring GPT-4-level abilities to open-source alternatives. Key techniques include temperature scaling, soft targets, and logit distillation.
model-pruning
OtherThis skill compresses large language models using pruning techniques like Wanda and SparseGPT to reduce model size by 40-60% and accelerate inference 2-4× with minimal accuracy loss. It enables one-shot compression without retraining and supports various sparsity patterns including N:M for hardware acceleration. Use it when deploying models on constrained hardware or needing faster inference with maintained performance.
long-context
DocumentationThis skill enables extending transformer model context windows beyond their original limits using techniques like RoPE, YaRN, and position interpolation. Use it when processing long documents (32k-128k+ tokens) or adapting pre-trained models for longer sequences. It provides implementations for rotary embeddings, attention biases, and interpolation strategies to handle extended positional encodings efficiently.
