sentencepiece
About
SentencePiece is a language-independent tokenizer that processes raw Unicode text using BPE or Unigram algorithms. It's fast, memory-efficient, and provides deterministic vocabulary generation without needing language-specific pre-tokenization. Use it for multilingual models, CJK language support, or when you require reproducible tokenization.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/sentencepieceCopy and paste this command in Claude Code to install this skill
Documentation
SentencePiece - Language-Independent Tokenization
Unsupervised tokenizer that works on raw text without language-specific preprocessing.
When to use SentencePiece
Use SentencePiece when:
- Building multilingual models (no language-specific rules)
- Working with CJK languages (Chinese, Japanese, Korean)
- Need reproducible tokenization (deterministic vocabulary)
- Want to train on raw text (no pre-tokenization needed)
- Require lightweight deployment (6MB memory, 50k sentences/sec)
Performance:
- Speed: 50,000 sentences/sec
- Memory: ~6MB for loaded model
- Languages: All (language-independent)
Use alternatives instead:
- HuggingFace Tokenizers: Faster training, more flexibility
- tiktoken: OpenAI models (GPT-3.5/4)
- BERT WordPiece: English-centric tasks
Quick start
Installation
# Python
pip install sentencepiece
# C++ (requires CMake)
git clone https://github.com/google/sentencepiece.git
cd sentencepiece
mkdir build && cd build
cmake .. && make -j $(nproc)
sudo make install
Train model
# Command-line (BPE with 8000 vocab)
spm_train --input=data.txt --model_prefix=m --vocab_size=8000 --model_type=bpe
# Python API
import sentencepiece as spm
spm.SentencePieceTrainer.train(
input='data.txt',
model_prefix='m',
vocab_size=8000,
model_type='bpe'
)
Training time: ~1-2 minutes for 100MB corpus
Encode and decode
import sentencepiece as spm
# Load model
sp = spm.SentencePieceProcessor(model_file='m.model')
# Encode to pieces
pieces = sp.encode('This is a test', out_type=str)
print(pieces) # ['▁This', '▁is', '▁a', '▁test']
# Encode to IDs
ids = sp.encode('This is a test', out_type=int)
print(ids) # [284, 47, 11, 1243]
# Decode
text = sp.decode(ids)
print(text) # "This is a test"
Language-independent design
Whitespace as symbol (▁)
text = "Hello world"
pieces = sp.encode(text, out_type=str)
print(pieces) # ['▁Hello', '▁world']
# Decode preserves spaces
decoded = sp.decode_pieces(pieces)
print(decoded) # "Hello world"
Key principle: Treat text as raw Unicode, whitespace = ▁ (meta symbol)
Tokenization algorithms
BPE (Byte-Pair Encoding)
spm.SentencePieceTrainer.train(
input='data.txt',
model_prefix='bpe_model',
vocab_size=16000,
model_type='bpe'
)
Used by: mBART
Unigram (default)
spm.SentencePieceTrainer.train(
input='data.txt',
model_prefix='unigram_model',
vocab_size=8000,
model_type='unigram'
)
Used by: T5, ALBERT, XLNet
Training configuration
Essential parameters
spm.SentencePieceTrainer.train(
input='corpus.txt',
model_prefix='m',
vocab_size=32000,
model_type='unigram',
character_coverage=0.9995, # 1.0 for CJK
user_defined_symbols=['[SEP]', '[CLS]'],
unk_piece='<unk>',
num_threads=16
)
Character coverage
| Language Type | Coverage | Rationale |
|---|---|---|
| English | 0.9995 | Most common chars |
| CJK (Chinese) | 1.0 | All characters needed |
| Multilingual | 0.9995 | Balance |
Encoding options
Subword regularization
# Sample different tokenizations
for _ in range(3):
pieces = sp.encode('tokenization', out_type=str, enable_sampling=True, alpha=0.1)
print(pieces)
# Output (different each time):
# ['▁token', 'ization']
# ['▁tok', 'en', 'ization']
Use case: Data augmentation for robustness.
Common patterns
T5-style training
spm.SentencePieceTrainer.train(
input='c4_corpus.txt',
model_prefix='t5',
vocab_size=32000,
model_type='unigram',
user_defined_symbols=[f'<extra_id_{i}>' for i in range(100)],
unk_id=2,
eos_id=1,
pad_id=0
)
Integration with transformers
from transformers import T5Tokenizer
# T5 uses SentencePiece internally
tokenizer = T5Tokenizer.from_pretrained('t5-base')
inputs = tokenizer('translate English to French: Hello', return_tensors='pt')
Performance benchmarks
Training speed
| Corpus | BPE (16k) | Unigram (8k) |
|---|---|---|
| 100 MB | 1-2 min | 3-4 min |
| 1 GB | 10-15 min | 30-40 min |
Tokenization speed
- SentencePiece: 50,000 sentences/sec
- HF Tokenizers: 200,000 sentences/sec (4× faster)
Supported models
T5 family: t5-base, t5-large (32k vocab, Unigram)
ALBERT: albert-base-v2 (30k vocab, Unigram)
XLNet: xlnet-base-cased (32k vocab, Unigram)
mBART: facebook/mbart-large-50 (250k vocab, BPE)
References
- Training Guide - Detailed options, corpus preparation
- Algorithms - BPE vs Unigram, subword regularization
Resources
- GitHub: https://github.com/google/sentencepiece ⭐ 10,000+
- Paper: https://arxiv.org/abs/1808.06226 (EMNLP 2018)
- Version: 0.2.0+
GitHub Repository
Related Skills
whisper
OtherWhisper is OpenAI's multilingual speech recognition model for transcribing and translating audio across 99 languages. It handles tasks like podcast transcription, meeting notes, and processing noisy or multilingual audio. Developers should use it for robust, production-ready speech-to-text capabilities.
huggingface-tokenizers
DocumentsThis Claude Skill provides high-performance tokenization using Rust-based HuggingFace tokenizers, supporting BPE, WordPiece, and Unigram algorithms. It enables custom tokenizer training, alignment tracking, and handles padding/truncation while integrating seamlessly with transformers. Use it when you need production-ready tokenization faster than 20 seconds per GB or require custom tokenizer development.
sentence-transformers
MetaThe sentence-transformers skill provides a production-ready framework for generating high-quality text and image embeddings using over 5,000 pre-trained models. It's ideal for developers needing semantic search, RAG implementations, clustering, or multilingual similarity tasks. Use it when you require state-of-the-art embeddings for retrieval or analysis in a scalable environment.
web-cli-teleport
DesignThis skill helps developers choose between Claude Code Web and CLI interfaces based on task complexity and workflow needs. It enables seamless teleportation of sessions between environments to maintain context and optimize productivity. Use it for session management and to determine the best interface for coding tasks requiring different levels of iteration or back-and-forth interaction.
